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Abstract As we recently showed [1] by using empirical data there is a certain behav-
ior referring to the development of the headway between two consecutive human driven
vehicles. Following on from this, we investigate correlations of the change in tempo-
ral headway over two subsequent road segments as the main goal of the present work
and found a strongly correlated behaviour for increasing temporal headways. In this way
a strong improvement for short-term prediction algorithms of conventional road users
should be achieved. A stationary infrared-based sensor system was developed for this
purpose, which has been mounted at reflector posts next to an urban street over a dis-
tance of about 50m. Due to its good accuracy, we are able to resolve vehicle following
times down to 25 milliseconds and to determine speeds more precisely. In 45 hours of
measurement the system detected over 20,000 passing vehicles.

Keywords Sensor system · road traffic · urban traffic · headway development · empirical
headway distribution · empirical speed distribution · correlations in headway dynamics ·
connected and automated vehicle (CAV) · single lane driving · vehicle merging

1. Introduction and Related Work

Safety, energy efficiency, and comfort are three of the most important issues related to
modern and upcoming road traffic [2]. In the course of ever increasing automation, the
energy consumption per vehicle will further continue to decrease [3]. A system that will
consist only of connected and automated vehicles (CAVs) is comparatively easy to han-
dle with regard to these points, since individual driving behaviour can be electronically
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coordinated either by an external source or by the vehicles themselves. Hence, different
situations become predictable leading to an efficient, crash-free use of the road network.
In this way, impending traffic disruptions can be counteracted in advance through targeted,
collective action using vehicle-to-vehicle (V2V) [4] or vehicle-to-infrastructure (V2I) [5]
communication. Even an increase in traffic flow and road capacity is expected due to a
higher influence of automated vehicles as simulations show [6–8].
Before the phase of fully automated traffic occurs in the distant future, however, there will
be the much more challenging phase of partially automated traffic between automated and
human driven vehicles. These new circumstances call for novel approaches with regards
to intelligent transportation systems (ITS) aiming at a decrease in individual travel time
finally [9]. Especially urban situations, which require frequent interaction between ma-
chines and human beings, will be difficult to handle. Thus, it becomes necessary to get
into the behaviour of conventional road users and make it as predictable as possible for
upcoming technlogies. In order to capture different traffic scenarios with human driven
vehicles involved, the on-board sensors of an automated vehicle can be supplemented by
V2I sensor systems, espeacially if the direct view is obstructed through obstacles like
buildings or other vehicles. The collected data yield short-term predictions and thus en-
able the CAV to operate efficiently, while disturbing the ongoing traffic as little as possible
[1]. It is particularly important to minimize the risk of any dangerous situations including
crashes. If a situation should ever develop contrary to the calculated scenario, the driving
strategy of the automated vehicle must of course change in an appropriate way. Even con-
tinual changes may become necessary to meet the required conditions in terms of safety,
energy efficiency and comfort.
The actual prediction can be realized by using different motion models [10], taking into
account real-time information of the locations and speeds of the relevant road users. With
the help of a dedicated algorithm, the CAV can plan and finally follow the most promis-
ing trajectory [2, 11]. However, it should be noted that such a driving manoeuvre and the
associated success depends crucially on the quality of the used model as this is seen as a
key feature in terms of robotic architectures [12].
In this paper we provide microscopic empirical data which is the basis for a realistic
prediction model. The use of the Pearson correlation coefficient in the context of vehicle-
vehicle interaction over subsequent road sections leads to a quantitative estimation of
human behaviour in terms of driving motor vehicles. The recorded traffic data should
help to select the right model approach and to calibrate it correctly. To the best of the
authors’ knowledge, there is no comparable work that deals with microscopic correla-
tions regarding vehicle following behaviour and temporal headways. However, there
are publications that deal with observables of static origin only like the distribution of
headways (e.g. [1, 13]). In the mid-1970s, Cowan was the first to came up with an em-
pirically confirmed result [14]. His famous so-called M3-distribution is still well known
in transportation science today. On the other hand there are approaches analyzing spa-
tiotemporal patterns in traffic and their correlation within an entire road network [15,16].
For these purposes microscopic models are usually used, mostly based on classic models
like cellular automata (CA) [17] or car-following models [18] in order to obtain macro-
scopic observables finally. However, this does not mean that correct microscopic results
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Figure 1 Exemplary application of the results in this work. T-intersection with common road traffic on
its major street. A connected and automated vehicle (red arrow) is approaching from below and
tries to merge into the ongoing traffic (blue marked headway). The question is how the marked
headway has developed, when reaching the intersection point. Due to the view obstructed by the
buildings (hatched boxes), an infrastructure sensor system is required to provide the headway
data from the major street to the CAV. [1]

also can be derived by this procedure as no classical model is able to reproduce real world
vehicle-following behaviour in an appropriate way [19, 20].

2. Application

The actual application of this work is illustrated in Fig. 1. An connected and automated
vehicle (red arrow) is approaching a T-intersection without traffic lights. As the CAV
is driving on the minor road, it must give way to conventional traffic on the major road
before turning right. Due to the infrastructure sensors installed along the major road, the
CAV is informed about the microscopic traffic situation already before it reaches the inter-
section area. A large set of previously collected traffic data from there, allows a statistical
analysis regarding certain patterns in human driving behaviour. Based on this historical
data, it is now possible to make a statistical short-term prediction of the vehicles on the
major road considering the current vehicle configuration. The CAV can therefore adjust
its driving strategy in advance in such a way that it can merge into a suitable gap (head-
way) among the ongoing traffic, preferably without stopping at all. Nevertheless, it has
to take into account possible changes of the target gap during its approach to the inter-
section and has to adapt its speed according to arisen circumstances continuously. Even
stopping may be necessary, if the merging manoeuvre cannot be completed safely, i.e.
crashes cannot be almost 100% excluded. This strategy is expected to reduce stopping
manouvres compared to conventional road user, but indeed is not able to totally avoid
them. All in all, this technology yields great advantages not only in terms of safety, but as
well in terms of energy efficiency and passenger comfort. The present paper firstly deals
with the collection of necessary traffic data and secondly provides a mathematical statisti-
cal analysis using correlations with regard to the spatio-temporal prediction of headways
between consecutive human driven vehicles.
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Figure 2 Schematic function of the measuring system. Three measuring units including the lidar sensors
are attached to reflector posts at positions P1, P2, and P3 next to an urban street. The red vertical
lines represent the lidar beams caused by each measuring unit to detect passing vehicles (only
vehicles from the bottom lane are detected). The distance between any two reflector posts is
called ∆si j. For the distance between adjacent reflector posts applies: ∆s12 ≈ ∆s23 ≈ 23.5m.

3. Measurement

With the premise of obtaining extremely accurate microscopic data, the measuring system
from our previous work [1] has been improved by replacing the infrared-based sensors by
even more reliable lidar sensors. In this new hardware configuration the current sensor
value can be read by the microcontroller at least every 25ms and is then saved together
with a time stamp to the internal flash memory. Beside the higher sampling rate, these new
lidar sensors also deliver a much better detection rate, and a lower susceptibility to ex-
ternal interferences at the same time. Another difference compared to the previous work
is, that only three of the four available sensors are needed here with regard to the cur-
rent application. Three sensors mean two resulting sectors between which the addressed
correlation is investigated to keep things as simple as possible. In [1] we were mainly
interested in the change of the temporal headway ∆τ over different distances, where the
consideration of several sectors is more expedient.
The measurement has taken place on an urban single-lane road in Duisburg, Germany
with a speed limit of 50km/h, where there is no influence on passing vehicle e.g. through
traffic lights, bus stops, speed bumps, or speed cameras. As a consequence, all road users
are able to choose their personal driving speed freely taking into account the speed limit
and the current traffic situation. During the four days of measurement in September and
October 2019, there have been similar weather conditions with dry roads and a mix of
cloudy and sunny periods. A total of exactly N = 20,018 vehicles were detected within
45 hours of measurement in order to enable a statistical data processing afterwards. The
traffic on the concerning road is dominated by cars. Only a small proportion of the pass-
ing vehicles are made up of trucks and buses. Please refer to [1], if there is interest in the
traffic volume according to individual vehicle classes, since another section of the same
road was studied there.

3.1. Measuring System

Three measuring units including one lidar sensor each make up the measuring system. As
Fig. 2 and 3 show, they have been attached to reflector posts at positions P1, P2, and P3.
The distance between any two reflector posts i and j at positions Pi and Pj is called ∆si j.
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(a) (b) (c)

Figure 3 Detection of passing vehicles. The three lidar sensors have been attatched to three neighboring
reflector posts next to the street (compare to Fig. 2). The red line visualizes the corresponding
infrared laser beam. To avoid the detection of vehicles from the opposite lane, the lidar sensors
are aligned down to the lane of interest. Subfig. (a): no vehicle at all→ IDLE (no detection);
Subfig. (b): a vehicle on the lane of interest → DETECTION; Subfig. (c): a vehicle on the
opposite lane→ IDLE (no detection).
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Figure 4 Typical signal shape of a stationary single measuring unit caused by two passing vehicles. The
difference between the temporal headway τ = 1470ms and the vehicle following time T =
1730ms is illustrated. The corredponding signal durations d (260ms and 400ms) yielding the
respective vehicle length, when considering the current speed. It is used to calculate the temporal
headway τ from the vehicle following time T during the evaluation (see Eq. 4).

In the present study the distance between adjacent reflector posts is about the same. It
applies ∆s12 ≈ ∆s23 ≈ 23.5m.
To avoid the detection of passing vehicles from the opposite lane, the sensors are attached
at a certain height and aligned down to the lane of interest (see Fig. 3). All three mea-
suring units are identical and are running independently of each other during the whole
measurement. Since we are investigating a single-lane road, it is not necessary to con-
sider the exact lateral position of passing vehicles, only the longitudinal position is rele-
vant here. However, during the evaluation, the recorded data of the single units is finally
merged. For this purpose it is necessary to synchronize the system times of all units in-
volved before the actual measurement takes place. This has been achieved by using three
extremely accurate clock modules, which must be set to the same system time first. After
the measurement has been successfully completed, the clock modules have to be checked
electronically for the exact amount of their temporal deviation. As this deviation shows
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i, j ∆t̄(c)i j [ms] σ
(c)
i j [ms] ∆si j [m]

1,2 1614 20 23.31±0.28
2,3 1639 11 23.67±0.16

Mean 1627 16 23.49±0.22

Table 1 Calibration process driving at a defined vehicle speed v(c) = 52km/h. The average transit time
between adjacent reflector posts i and j at positions Pi and Pj (see Fig. 2) is called ∆t̄(c)i j and

the corresponding standard deviation σ
(c)
i j , respectively. According to Eq. 1 the specified sector

length ∆si j is finally calculated.

a linear behaviour in dependence of time, it is thus possible to eliminate the resulting
systematic error in retrospective. To ensure that the flowing traffic behaves as usual, the
measuring units are not recognizable for passing drivers, because the lidar sensors are
mounted on the back side of the reflector posts. Every time a vehicle passes one of the
relevant positions Pi on the lane of interest, a characteristic signal drop occurs. This is due
to the fact that the lidar sensors in this setup are actually used for distance measurements.
The internal electronics determine the time delay between the transmission of a infrared
laser signal and its reception after reflecting off of a target. This information is calculated
together with the known speed of light and is finally translated into a distance. A low
voltage output corresponds to a low distance (a passing car, compare to Fig. 3 (a)) and a
high voltage output to a high distance (the road, compare to Fig. 3 (b)). Please refer to
Fig. 4 for a typical example of the signal shape.

3.2. Calibration Method

After the measuring system has been successfully installed and has taken up its function,
it now has to be calibrated. This step is necessary because of the following two reasons.
First, to determine the exact distance of the reflector posts yielding the exact speed of
passing vehicles and second, to get an idea about the error in measurement. Achieving
this goal has been done by passing the concerning road segment multiple times with a
car driving at a GPS confirmed calibration speed of v(c) = 52km/h. In order to make
sure that v(c) is both constant and reproducible, the car’s cruise control has been activated
during the calibration process. As a result the average transit times ∆t̄(c)12 and ∆t̄(c)23 for
the respective road sectors ∆s12 and ∆s23 are determined. The corresponding standard
deviations σ

(c)
12 and σ

(c)
23 serve as a quantity for the error in measurement. Additionally,

the small resulting values of the standard deviation confirm that the constant speed using
the cruise control of the calibration vehicle can be seen as reproducible. A total of ten
calibration runs were carried out per measurement day. A summary of all corresponding
parameters can be seen in Tab. 1.
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3.3. Data Processing

From the averaged transit times ∆t̄(c)i j in the previous Sec. 3.2, the sector lengths ∆si j =
{∆s12,∆s23} are determined (see Tab. 1):

∆si j = v(c) ·∆t̄(c)i j . (1)

To obtain finally the average speed vn
i j (short: v) of a particular vehicle n within the

sector ∆si j using the corresponding transit time ∆tn
i j, we write:

vn
i j = v(c) ·

∆t̄(c)i j

∆tn
i j

=
∆si j

∆tn
i j
. (2)

The vehicle following time T n
i (short: T ) for two consecutive vehicles n and n+ 1 is

calculated as follows:

T n
i = tn+1

i − tn
i , (3)

where tn
i describes the signal start time of vehicle n at position Pi (see Fig. 2).

The temporal headway τn
i (short: τ) is derived from this by subtracting the corresponding

signal duration dn
i (short: d) from the preceding vehicle n:

τ
n
i = T n

i −dn
i = tn+1

i − tn
i −dn

i . (4)

Consequently Eq. 4 describes the temporal headway in front of vehicle n. In Fig. 4 the
difference between T and τ is illustrated with an exemplary signal sequence. Finally, the
change in temporal headway ∆τn

i j (short: ∆τ) between two consecutive vehicles n and
n+1 over the defined distance ∆si j is regarded:

∆τ
n
i j = τ

n
j − τ

n
i . (5)

Hence, a positive value of ∆τ corresponds with an increase, whereas a negative one
corresponds with a decrease in temporal headway τ .
Last but not least, the correlation behaviour between the change in temporal headway
∆τn

i j within the adjacent road sectors ∆s12 and ∆s23 is presented. It has been empirically
shown [1] that ∆τn

i j is sufficiently normally distributed to justify the following approach.
The Pearson correlation coefficient c (first found by Francis Galton in 1888 [21]) is a
statistical variable measuring the linear correlation between two series ∆τ∆τ∆τ12 and ∆τ∆τ∆τ23 of
length N. For a detailed mathematical view please refer to [22]. From this the following
N value pairs

{∆τ∆τ∆τ12
∗,∆τ∆τ∆τ23

∗}= ... ,{∆τ
n
12
∗, ∆τ

n
23
∗}, {∆τ

n+1
12
∗
, ∆τ

n+1
23
∗}, ... , {∆τ

N
12
∗
, ∆τ

N
23}
∗

(6)

are formed. However, in order to apply the Pearson correlation coefficient the right
way and to obtain values between c =−1 (perfectly anti correlated behaviour) and c = 1
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(perfectly correlated behaviour), it has been necessary to normalize the data series ∆τ∆τ∆τ12
and ∆τ∆τ∆τ23 with its elements ∆τ

n
12 and ∆τ

n
23, respectively, first:

∆τ
n
i j
∗ =

∆τn
i j−〈∆τ∆τ∆τ i j〉
σ(∆τ∆τ∆τ i j)

, (7)

where 〈∆τ∆τ∆τ i j〉 describes the mean, and σ(∆τ∆τ∆τ i j) the standard deviation of the series ∆τ∆τ∆τ i j.
To calculate the Pearson correlation coefficient between the normalized series ∆τ∆τ∆τ12

∗ and
∆τ∆τ∆τ23

∗ (each of length N) finally, the following formula is applied:

c = c(∆τ∆τ∆τ12
∗,∆τ∆τ∆τ23

∗) = 〈∆τ∆τ∆τ12
∗ ·∆τ∆τ∆τ23

∗〉= 1
N

N

∑
n=1

∆τ
n
12
∗ ·∆τ

n
23
∗. (8)

Please note that N +1 detected vehicles lead to N temporal headways τ to be included
in the calculation as the last vehicle n = N +1 has no vehicle ahead.

In order to obtain a more detailed view on the underlying correlation behaviour, the
∆τ-data is splitted up into subsets according to the related headway τ = τ1 at position P1.
For this purpose the following τ-intervals(

τ−(k), τ+(k)
]
=
(

τ0 + k · τrange, τ0 +(k+1) · τrange

]
(9)

are used, where k = 0,1,2, ... indicates the respective interval number, τ−(k) the lower
and τ+(k) the upper boundary. In the present work all resulting intervals are of the same
range τrange = 500ms. The starting value of the first interval (k = 0) is called τ0 = 500ms.
Hence, this leads to the following τ-intervals to be considered:(

500,1000
]
ms,

(
1000,1500

]
ms,

(
1500,2000

]
ms, ... . (10)

Each of these contains Nk elements. It is obvious that for the used dataset applies
N > Nk. If we now want to calculate the Pearson coefficient c of the concerning headway
values τ = τ1 within a particular interval k, Eq. 8 changes to

c =
1

Nk

N

∑
n=1

(
∆τ

n
12
∗ ·∆τ

n
23
∗
∣∣∣τ1 ∈

(
τ−(k), τ+(k)

])
. (11)

In other words, the data is first sorted according to different temporal headways τ = τ1
detected at position P1. All those vehicles whose temporal headways τ1 fall within the
relevant interval from Eq. 10 are used for further processing. The change in their temporal
headway ∆τ12 in sector ∆s12 is then compared with that (∆τ23) in sector ∆s23 (see Fig. 2).
From that the correlation coefficient according to Pearson is finally calculated as shown
in Eq. 11. All in all, this method leads to a much more accurate prediction of the most
probable headway behaviour, finally.
Another method to show the relationship of the two series ∆τ∆τ∆τ12 and ∆τ∆τ∆τ23 with length N (or
with subsets of these according to Eq. 9) is to plot them in a common scatter diagram. In
this way, the (linear) correlation between two variables can be visualized. This is achieved
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by entering all N (Nk) pairs of elements {∆τn
12, ∆τn

23}
(
{∆τn

12,∆τn
23} ∈

(
τ−(k), τ+(k)

])
as points in a common diagram using Cartesian coordinates. It is important to see that
despite the same symmetric shape of the marginal distributions, the scatter diagram can
vary in appearance depending just on the correlation coefficient c. For values around c= 0
(no or very less linear correlation) the set of dots in the diagram looks circular, whereas
for increasing positive (or negative) values of c the set of dots becomes more and more
ellipsoidal. The difference is that for correlated data (c > 0), the slope of the main axis of
this ellipse becomes positive and for anti-correlated data (c < 0) negative.

4. Results

The following part is splitted up into two subsections. Beside the empirically determined
speed and temporal headway distribution in Sec. 4.1, the main goal of this work is pre-
sented in Sec. 4.2. The latter includes the visualization of the correlated ∆τ-data using
scatter diagrams. Additionally, a sample of the underlying symmetrical marginal distri-
butions is illustrated. Last but not least, the development of the respective Pearson cor-
relation coefficient for different temporal headways τ is shown and quantified by using a
non-linear fit function.

4.1. Speed and Headway Distribution

In order to give the reader further information about the properties of the recorded vehicle
data, the empirical speed (Fig. 5(a)) and the temporal headway distribution (Fig. 5(b)) are
shown in advance. Due to the fact that there are three measuring units installed along
the street, two average speeds v per vehicle are available, one for each road sector ∆s12
and ∆s23. For more details regarding the averaging process, please refer to Sec. 3.3. As
the two single speed statistics are not exhibiting significant statistically deviation among
themselves, they are displayed in a common histogram. The same applies for the temporal
headway τ . Because this observable is measured at three positions P1, P2, and P3, there
are even three values available for each passing vehicle contributing to the respective
histogram.

4.2. Correlations

This chapter is devoted to the empirically measured correlation between the change in
temporal headway ∆τ12 and ∆τ23 within the two adjacent road sectors ∆s12 and ∆s23
(see Fig. 2; for the formal defintion of ∆τ please refer to Eq. 5). As explained in Sec. 3.3,
the vehicle data are divided into the intervals from Eq. 10 according to different temporal
headways τ (measured at P1), first. Subsequently, the associated changes in temporal
headway ∆τ12 and ∆τ23 are plotted over each other in a scatter diagram (Fig. 6). This is
done for the first nine τ-intervals. Based on this visualization, an increasing trend of the
correlation between the two variables ∆τ12 and ∆τ23 can be seen with increasing τ . This is
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Figure 5 Histograms of the empirically determined speed distribution (Subfig. (a), bin width 1km/h) and
temporal headway distribution (Subfig. (b), bin width 200ms). The histograms include the data
of all four measurement days from the urban road specified in Sec. 3. Please note that due to
visualization purposes a cutoff in Fig. 5(b) has taken place for headways τ > 15000ms.

Interval of τ µ [ms] σ [ms] γ κ µ̄ σ̄ ν̄

500 < τ ≤ 1000 10 67 0.82 8.67 8.61 48.17 4.15
∆τ12 1000 < τ ≤ 1500 4 84 0.07 8.66 3.84 61.62 4.49

1500 < τ ≤ 2000 −7 108 −0.13 7.79 −5.64 87.34 6.02

500 < τ ≤ 1000 9 62 0.46 5.50 6.48 48.68 4.80
∆τ23 1000 < τ ≤ 1500 1 81 −0.28 5.41 1.82 62.57 4.79

1500 < τ ≤ 2000 0 102 −0.04 5.16 0.93 82.61 5.78

Table 2 Properties of the histograms shown in Fig. 7. The underlying data has been analyzed for its mean
µ , standard deviation σ , skewness γ , and kurtosis κ , where µ and σ are also the fit parameters of
the respective normal distribution. To differentiate, the fit parameters of the generalized Student’s
t-distribution are written with a bar on top: µ̄ , σ̄ , and ν̄ .

also confirmed by the calculated Pearson coefficient in the top left corner of each scatter
plot.

From this correlation analysis, it can be concluded that a small temporal headway τ

between sucessive vehicles tend to remain almost constant, but is subject to individual,
more or less disordered fluctuations. This may be due to the fact that the closer a vehicle
approaches the vehicle in front, the less it is able to choose its personal speed. As a
consequence, the vehicle will adapt the speed from its preceding vehicle without caring
what the precise headway is, i.e. there will be a continuous switching between slight
enlargement and reduction of τ leading to a small correlation coefficient c, finally. This
is also in line with the three-phase traffic theory [23], in which the temporal headway
(time gap) is constantly changing to a certain extent. In terms of larger headways τ

(large c), where there is no disturbing vehicle directly ahead, another effect is observed.
The driver is now able to maintain the selected state of motion over greater distances
without constantly switching between slight acceleration and decelerating. As a result, a
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Figure 6 Scatter diagrams visualizing the correlation between ∆τ12 and ∆τ23 according to different tem-
poral headways τ . Each point corresponds to exactly one vehicle. To get an idea about the
related error in measurement of all nine shown diagrams, a black (25ms× 25ms)-box named
”Accuracy” has been added to the bottom right one. The actual accuracy of the microcontroller
is around 1ms. However, due to the fact that the sensor can only be read out every 25ms, the
error box must be adjusted accordingly. The associated Pearson correlation coefficient c is dis-
played in the top left corner of each plot. As one can already see here, c shows an increasing
trend with increasing temporal headway τ . In order to quantify this fact, the related fit function
c(τ) can be seen in Fig. 8. The axis labeling refers to all nine plots. All times are given in
milliseconds (ms).

systematic change in temporal headway takes place, i.e. the gap becomes systematically
larger or smaller. This in turn corresponds to a high positive correlation c between the
two values of ∆τ12 and ∆τ23, which in this case are predominantly either both positive or
both negative.
At this point the associated marginal distributions of ∆τ12 and ∆τ23 for the first three
scatter plots from Fig. 6 (columnwise) should be presented to give the reader an idea
about their shape. They are shown in Fig. 7. The best probability density function (PDF)
to fit these histograms turned out to be the generalized Student’s t-distribution (dashed
blue line) taking into account the heavy tails of the underlying data. For comparison, the
normal distribution is plotted to the data as well (red line). Please refer to App. A in order
to see the exact mathematical form of the PDFs. All related parameters can be found
in Tab. 2. The histograms are symmetrically (skewness γ ≈ 0) distributed around zero
and the mean value µ within the chosen measure of error σ

(c)
i j known from the calibration
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Figure 7 Marginal distributions (columnwise) of the first three scatter plots in Fig. 6. Each plot shows
the empirically determined histogram of the change in temporal headyway ∆τ12 (first row of the
plots) and ∆τ23 (second row of the plots) within the first sector ∆s12 and second sector ∆s23,
respectively. The best probability density function (PDF) to fit the underlying histograms turned
out to be the generalized Student’s t-distribution (plotted in dashed blue). For comparison, the
normal distribution is plotted to the data in red additionally. All related statistical parameters
are indicated in Tab. 2.

process (see Tab. 1). As expected, the width of the ∆τ-distributions (standard deviation σ )
in Fig. 7 increases with the temporal headway τ , which probably can be explained due to
a greater scope for action of the respective vehicle. In addition to the scatterplots in Fig. 6,
it is also of interest to quantify the development of the Pearson correlation coefficient c
for different headways τ . This is achieved by calculating c for the first thirty intervals of
τ from Eq. 10. A fit function of the form

c(τ) =−a · exp(−b · τ)+ c0 (12)

has been applied to this data, where a and b are curvature parameters and c0 the asymp-
totic parameter (upper boundary). Using the assumption c(τ = 0) = 0 leads us to the final
and simplified expression

c(τ) = c0
(
1− exp(−bτ)

)
. (13)

The resulting plot is shown in Fig. 8. Obviously, the course of the underlying data
points exhibits an increasing asymptotic behaviour, which justifies the use of the fit func-
tion according to Eq. 13. Based on the present data, the value of τ , from which the cor-
relation is assumed to be constant and saturated, can be set somewhere between 3000ms
and 5000ms.
These information enable a statistical short-term prediction for the spatiotemporal devel-
opment of the temporal headway τ . By implementing an appropriate algorithm using the
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Figure 8 Pearson Correlation Coefficient c of the change in temporal headway ∆τ between consecutive
road segments according to different headways τ (detected at position P1, see Fig. 2). All data
points are shifted to the the middle of the associated interval by 250ms. A fit function (red)
according to Eq. 13 is used to approach the underlying data. The associated parameters b and c0
are listed at the bottom right corner. The resulting function is rapidly converging towards a very
high value of saturation c0 > 0.9. Please note that the units in terms of the fit function can be
switched from seconds to milliseconds by applying s−1 = 10−3ms−1 to parameter b.

current vehicle configuration of a major street, an automated vehicle can adapt its speed
in advance in order to merge into the ongoing traffic as efficiently as possible (see Fig. 1).

5. Conclusion and Outlook

In the coming decades, road traffic will be increasingly dominated by automated vehicles.
In order to enable the smoothest possible interaction between them and conventional ve-
hicles, a number of conditions must be fulfilled. One of the most important points in
this context is a good estimation of the behaviour of human-controlled vehicles through
associated algorithms. Especially in terms of lane changing and merging maneuvers at
intersections (see Fig. 1), short-term predictions of conventional vehicles become indis-
pensable with regard to a fluent traffic flow on the one hand, and indivdual safety, energy,
and comfort conditions on the other hand. Therefore, this paper deals with a statistical
analysis of the headway behaviour between consecutive human driven vehicles.
As already shown in our latest paper [1], it can be confirmed once again that the change in
temporal headway ∆τ increases with a growing temporal headway τ between consecutive
vehicles (see Fig. 7). In the present work, this value was measured over a fixed distance
of about 23.5m. The associated probability density function (PDF) best matching to the
∆τ-data is a generalized Student’s t-distribution, since it takes into account the heavy tails
of the underlying histogram. For a simple mathematical treatment, however, even a nor-
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mal distribution may be justified in order to approach the data satisfactorily.
When the road is splitted up into two adjacent sectors of the same length, in which ∆τ is
measured each, it is possible to gain even more information of the headway behaviour of
two consecutive vehicles. This is done by determining the Pearson correlation coefficient
c between the concerning ∆τ-values for different temporal headways τ . In this case, the
empirical distributions of ∆τ from Fig. 7 serve as the respective marginal distributions
of the related scatter diagrams shown in Fig. 6. Finally, the development of the Pearson
coefficient c itself has been quantified according to different temporal headways τ (see
Fig. 8). It turned out that there is a strongly positive correlated and asymptotic behaviour
for large headways (τ > 5000ms). Between τ = 500ms and τ = 5000ms the correlation
coefficient rises sharply from c = 0.30 to c = 0.92 and reaches its upper boundary value
around there. This characteristic behavior justifies the usage of an exponential fit function
as described in Eq. 13 with a boundary value of c = c0 = 0.943.
Due to the high correlation values these results can be used to obtain short-term predic-
tions and answer the question of how the investigated headway τ develops most likely in a
hypothetical third sector. Because of the increasing correlation coefficient, the reliability
of this forecast increases with the headway between the regarded vehicles.
Using this information, an automatic vehicle can now adapt its driving strategy in order
to merge as smoothly as possible into the ongoing traffic. Nevertheless, it must always
be prepared to react adequately to unforeseen events and, if necessary, revise its chosen
parameters as all underlying predictions are of statistical origin.
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A. Appendix

Below, the probability density functions (PDFs) used in Sec. 4.2 are introduced shortly.
Please note that this is not comparable to a detailed mathematical description.

A.1. Normal Distribution

The probability density function of the normal distribution is

N (x; µ,σ) =
1√

2πσ2
· exp

(
− (x−µ)2

2σ2

)
(14)

where µ is the mean and σ the standard deviation. The expression σ2 is also known as
the variance.

A.2. Generalized Student’s T-Distribution

The generalized Student’s t-distribution has the probability density function given by

f (x; µ̄, σ̄ , ν̄) =

(
ν̄

ν̄ + (x−µ̄)2

σ̄2

) 1+ν̄

2

· 1
σ̄
√

ν̄ ·B( ν̄

2 ,
1
2)

(15)

where µ̄ is called location parameter, σ̄ the scale parameter, and ν̄ the degrees of
freedom. The expression B(y,z) is known as the Euler beta function and is defined as
follows:

B(y,z) =
∫ 1

0
ky−1(1− k)z−1dk (16)

Please note that the related parameters of f are usually written without a bar. Here, we
want to depict the difference to the parameters of the normal distribution as used above
(see Tab. 2).
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