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Abstract – One of the main strengths of microscopic pedestrian simulation models is the ability to explicitly 
represent the heterogeneity of the pedestrian population. Most pedestrian populations are heterogeneous with respect 
to the desired speed, and the outputs of microscopic models are naturally sensitive to the desired speed; it has a 
direct effect on the flow and travel time, thus strongly affecting results that are of interest when applying pedestrian 
simulation models in practice. An inaccurate desired speed distribution will in most cases lead to inaccurate 
simulation results. In this paper we propose a method to estimate the desired speed distribution by treating the 
desired speeds as model parameters to be adjusted in the calibration together with other model parameters. This 
leads to an optimization problem that is computationally costly to solve for large data sets. We propose a heuristic 
method to solve this optimization problem by decomposing the original problem in simpler parts that are solved 
separately. We demonstrate the method on trajectory data from Stockholm central station and analyze the results to 
conclude that the method is able to produce a plausible desired speed distribution under slightly congested 
conditions. 
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1. Introduction 
Microscopic simulation is a powerful tool to evaluate or compare infrastructure design or control 
strategies. One of its strengths is the ability to explicitly represent the heterogeneity of the pedestrian 
population in the model. Most pedestrian populations are heterogeneous with respect to the desired speed; 
the speed that a pedestrian is striving to keep but is often unable to keep due to surrounding pedestrians.  

The outputs of microscopic models are sensitive to the value of the desired speed; it has a direct 
effect on the flow and the travel time in most scenarios, thus strongly affecting results that are of interest 
when applying pedestrian simulation models in practice. An inaccurate desired speed distribution will in 
most cases lead to inaccurate simulation results. 

The desired speed is often not directly observable, since in any situation with significant congestion, 
most pedestrians are unable to keep their desired speed. A proxy for the desired speed is the free flow 
speed; the speed that the pedestrians walk at in absence of any interactions with other pedestrians. The 
free flow speed is directly measurable, and in most microscopic models the free flow speed of an 
individual pedestrian is equal to its desired speed. However, since the population present when free flow 
occurs may have a different desired speed distribution than the population present when congestion 
occurs, observations of the free flow speed distribution may provide an inaccurate estimate of the desired 
speed distribution during the congested conditions of interest. This may occur even if the same 
individuals are present both during free flow and congested conditions due to variations of individual 
desired speeds over time.  

Investigations of pedestrian speeds have been performed since at least the fifties, when controlled 
experiments were performed and observations in the London Underground were made, resulting in an 
estimated free flow speed of 1.6 m/s [1]. A modern investigation of a similar kind was performed in Hong 
Kong, reporting a free flow speed of around 1.3 m/s, but with significant variations between walking 
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areas with differing characteristics [2]. Numerous similar studies have been performed, see [3] for an 
overview. A common reference of the free flow speed is [4], who reports a value of 1.34 m/s, which also 
happens to be the average of the values reported by the studies reviewed by [3]. Measurements of free 
speed distributions dates back to at least the seventies through observations of low density conditions [5]. 
More recently, the free speed distribution was estimated in controlled experiments, also by only 
considering low density observations [6], [7]. These desired speed estimates were improved in [3], which 
corrects for that the data is censored; an estimate based only on free pedestrians in partly congested traffic 
will be biased since pedestrians with a high desired speed have a larger probability to be constrained. 
However, this method depends on a classification of observed pedestrians into constrained or freely 
walking, respectively. For vehicular traffic this classification can be circumvented by considering 
observations partly censored [8], but this method is hard to apply to pedestrian traffic due to the lack of 
clearly defined lanes.  

In this paper we propose a method to estimate the desired speed distribution by treating the desired 
speeds as model parameters to be adjusted in the calibration together with other model parameters. The 
method is based on the calibration methods previously applied in [9]–[11] to calibrate the Social Force 
Model (SFM) [12]. Also here, we demonstrate the proposed method by calibrating the SFM, but both the 
proposed method and the previously applied methods can also be used to calibrate similar models. 

The optimization problem of the proposed method is similar to the one in [9]: simulations are 
performed for each observed pedestrian, while letting the surrounding pedestrians move exactly according 
to the observations. The deviations of the simulated trajectories from the observed ones are used to define 
the objective of a minimization problem with the model parameters as decision variables.  

In [9] the desired speed of each pedestrian is set to the maximum observed instantaneous speed of 
that pedestrian, while in [10] it is set to a certain percentile of the observed instantaneous speeds of the 
pedestrian. As noted in [9], this works well for low density condition. However, the desired speed is 
underestimated when fast pedestrians start to get delayed. A biased estimate of the desired speed may lead 
to biased estimates also of the other parameters, due to interdependence between parameters; a too small 
desired speed may for example be partly compensated by lowering the relaxation time.  

The method in [11], on the other hand, treats the desired speeds as calibration parameters, adjusting 
them together with the parameters that are common to all pedestrians. This results in an optimization 
problem with dimension proportional to the number of observed pedestrians, which dramatically 
increases the solution time with increasing size of the data set. This was not a problem in [11], due to the 
use of a data set from controlled experiments with a relatively small number of subjects. However, for 
naturalistic data sets with thousands of pedestrians the computational cost becomes problematic.  

We propose a heuristic solution approach to this optimization problem that decomposes the problem 
into one problem for the model parameters that are assumed to be constant over the population, here 
called homogeneous parameters, and a set of one-dimensional problems, one for the desired speed of each 
pedestrian. These problems are solved alternately until the improvement is negligible. In this way, instead 
of having a problem with dimension proportional to the number of observed pedestrians, we get a number 
of one-dimensional problems proportional to the number of pedestrians and a problem with dimension 
equal to the number of homogeneous parameters. This implies that the method is feasible for large data 
sets for which the optimization problems would be prohibitively costly to solve directly. Intuitively, this 
decomposition is possible since the optimal desired speeds are not too strongly dependent on the 
homogeneous parameters, and the optimal homogeneous parameters are only slightly affected by each 
desired speed. 
 
2. Method 
This paper presents a method to jointly estimate homogeneous parameters and heterogeneous desired 
speeds. The method is expected to be applicable for most microscopic models with continuous space 
representation, but for concreteness and since the exact definition of the desired speed depends on the 
model considered, a specific version of the SFM is considered. 
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2.1. Simulation model 
The simulation model considered in this study is based on the version of the SFM presented by [9]. The 
acceleration �̈�𝐱𝑖𝑖 of agent 𝑖𝑖 is given by a sum of forces dependent on the surroundings, 
 

�̈�𝐱𝑖𝑖 =
1
𝜏𝜏

(𝐯𝐯𝑖𝑖 − �̇�𝐱𝑖𝑖) + �
1 + cos𝜑𝜑𝑖𝑖𝑖𝑖

2
𝐅𝐅𝑖𝑖𝑖𝑖

𝑖𝑖

, 
 

(1) 

 
where the desired velocity 𝐯𝐯𝑖𝑖, is given by some route choice model or as input data; 𝜑𝜑𝑖𝑖𝑖𝑖 is the angle 
between the direction of motion of the affected agent 𝑖𝑖 and the direction toward the affecting agent 𝑗𝑗. 
When applying the model in simulations, a stochastic term is usually included in addition to the 
systematic terms above; however, only the systematic effect is calibrated, in line with [9]. Also, a force 
from static obstacles is necessary to include, however, the observed area does not include any obstacles, 
see section 3. The social force, 𝐅𝐅𝑖𝑖𝑖𝑖 , exerted on agent 𝑖𝑖 by agent 𝑗𝑗 is given as the gradient of a potential 
𝑉𝑉 of the form  
 

𝑉𝑉 = 𝐹𝐹𝐹𝐹exp�−
1
2σ

��𝑟𝑟𝑖𝑖𝑖𝑖 + ��𝐫𝐫𝑖𝑖𝑖𝑖 + �̇�𝐫𝑖𝑖𝑖𝑖𝑇𝑇���
2
− ��̇�𝑟𝑖𝑖𝑖𝑖𝑇𝑇�

2�, (2) 

 
where 𝐹𝐹 is the range scale and 𝐹𝐹 the strength of the force, 𝑇𝑇 is the anticipation time, and 𝐫𝐫𝑖𝑖𝑖𝑖 the 
relative position of the affecting agent. In total, this model contains five parameters: the relaxation time 
𝜏𝜏, the social force strength 𝐹𝐹, the social force range scale 𝐹𝐹, the anticipation time 𝑇𝑇, and the desired 
speed 𝑣𝑣. 
 
2.2. The calibration problem 
For application of microscopic pedestrian simulation models for predictive purposes, the goal of the 
calibration is in general to find parameter values that result in a model that can predict traffic under 
conditions and environments that are similar, but not identical, to some observed reference situation. To 
achieve this the parameters are adjusted such that the output of the model becomes sufficiently similar to 
the observed reference traffic. We call this the calibration of the model, and this is the focus of the present 
study, while the subsequent test of the predictive power of the model through comparison with 
independent data, that is the validation, is not considered. 
 As noted above, the model has five parameters that correspond to various properties and preferences 
of the simulated pedestrians. However, some, or all, of these properties and preferences may vary over the 
population, so in principle we would like to estimate the multivariate distribution of the parameters over 
the population. This is, however, an immense task requiring large amounts of data. We will here 
undertake the simpler task of estimating the distribution of only the desired speed, under the assumption 
that the remaining parameters are homogeneous, that is all agents have the same value of the parameters. 
An important observation is that the distribution of the desired speed under the assumption of 
homogeneous remaining parameters is not necessarily the same as the marginal distribution of desired 
speed when all parameters vary over the population. 

We formulate the calibration problem as an optimization problem, minimizing some error function 
that quantify the difference between the model output and the reference data, 
 

min
𝑣𝑣𝑖𝑖,𝜃𝜃

�𝐸𝐸𝑖𝑖(𝑣𝑣𝑖𝑖,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1

, 

 

 

(5) 
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where 𝑁𝑁 is the number of trajectories in the data set, 𝐸𝐸𝑖𝑖 is an error function that quantify the difference 
between the simulated trajectory of agent 𝑖𝑖 and the observed trajectory of the corresponding pedestrian, 
and 𝜃𝜃 is the set of homogeneous parameters, that is, 𝜃𝜃 = (𝜏𝜏,𝐹𝐹,𝐹𝐹,𝑇𝑇). 
 A significant difficulty here is that the dimensionality of the solution space of problem (5) is 𝑁𝑁 + 4, 
that is, the dimensionality is proportional to the number of observed trajectories. For a modest number of 
observed trajectories problem (5) is tractable, but as the number of trajectories in the data set increases the 
problem quickly becomes computationally too costly to solve directly. 
 
2.3. Objective function 
The error function 𝐸𝐸𝑖𝑖 quantify the fit of individual simulated trajectories to the observed data. Many 
versions have been used in the literature; here we consider the integrated Euclidian distance between the 
observed trajectory and the trajectory obtained by simulating an agent with the same initial conditions and 
environment as the observed pedestrian. That is, the agent is simulated in presence of agents moving 
exactly according to the observed trajectories. This is similar to the approach taken by e.g. [9], [10]. 
Furthermore, it is assumed that the desired destination of the agent is the end of the observed trajectory. 
The simulation is executed for a certain time 𝑇𝑇𝑠𝑠𝑖𝑖𝑠𝑠, and is then restarted with the agent reset to a position 
at the observed trajectory. This is repeated 𝐾𝐾𝑖𝑖 times, to avoid promoting parameter values that steer back 
the agent toward the observed trajectory from a position deviating from it. 
 The error function thus becomes 
 

𝐸𝐸𝑖𝑖(𝑣𝑣𝑖𝑖,𝜃𝜃) = �� ��𝐱𝐱𝑖𝑖𝑘𝑘(𝑣𝑣𝑖𝑖,𝜃𝜃; 𝑡𝑡) − 𝐗𝐗𝑖𝑖(𝑡𝑡)�� 𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖
𝑘𝑘+𝑇𝑇𝑠𝑠𝑖𝑖𝑠𝑠

𝑡𝑡𝑖𝑖
𝑘𝑘

𝐾𝐾𝑖𝑖

𝑘𝑘=0

, 

 

(6) 

where 𝐱𝐱𝑖𝑖𝑘𝑘(𝑣𝑣𝑖𝑖,𝜃𝜃; 𝑡𝑡) and 𝐗𝐗𝑖𝑖(𝑡𝑡) are the simulated and observed positions at time 𝑡𝑡, respectively; and 
𝑡𝑡𝑖𝑖𝑘𝑘 ,𝑘𝑘 = 0,1, … ,𝐾𝐾𝑖𝑖 are the starting times for each of the short simulations. 
 
2.4. Optimization method 
As mentioned above, problem (5) is computationally too costly to solve directly for large data sets. This is 
due to the combination of the large dimensionality of the solution space and that the objective function is 
very unlikely to be convex, likely to have multiple local minima, and is likely to be non-smooth and even 
discontinuous at some points. We therefore propose a method similar to the coordinate descent class of 
optimization methods, see e.g. [13], to solve the problem. 
 The proposed method can be summarized as: 
 
0. Obtain initial estimate of the desired speed distribution by heterogenous calibration. 
1. Minimize the sum of the error functions with respect to the homogeneous parameters 𝜃𝜃, keeping 

the desired speeds at the values obtained in previous step. 
2. Separately minimize each error function 𝐸𝐸𝑖𝑖 with respect to 𝑣𝑣𝑖𝑖, keeping the homogeneous 

parameters at the values obtained in previous step. 
3. Go to step 1 if improvement in the error is above some threshold. 

 
In the initial step, step 0, the problems 

 
min
𝑣𝑣𝑖𝑖,𝜃𝜃𝑖𝑖

𝐸𝐸𝑖𝑖(𝑣𝑣𝑖𝑖,𝜃𝜃𝑖𝑖) ,  𝑖𝑖 =  1,2, … ,𝑁𝑁, 
 

(7) 

 
are solved separately. This gives an initial estimate of the desired speed distribution. The values of 𝜃𝜃𝑖𝑖, on 
the other hand are highly uncertain, since most trajectories separately contain too little information to 
obtain meaningful values of all the parameters. We also use the solutions of (7) to remove any trajectories 
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with a value of 𝐸𝐸𝑖𝑖∗ = min
𝑣𝑣𝑖𝑖,𝜃𝜃𝑖𝑖

𝐸𝐸𝑖𝑖(𝑣𝑣𝑖𝑖 ,𝜃𝜃𝑖𝑖) above a threshold corresponding to an average deviation of 0.1 m 

from the observed trajectory from further use in the calibration procedure, since such trajectories are 
likely affected strongly by factors external to the model. If included, these trajectories could promote 
values of the parameters that compensate for such external effects. The threshold was chosen rather high 
to only sort out strongly deviating trajectories. 
 In step 1, the problem 
 

min
𝜃𝜃
�𝐸𝐸𝑖𝑖(𝑣𝑣𝑖𝑖,𝜃𝜃)
𝑁𝑁

𝑖𝑖=1

, 
 

(8) 

 
is solved, with 𝑣𝑣𝑖𝑖 according to the result of the previous iteration of step 2 (or step 0 if it is the first 
iteration). This problem has a computationally costly objective function requiring the simulation of each 
of the agents representing the observed pedestrians, and the solution space has a dimensionality equal to 
the number of homogeneous parameters; four in the case of the model used as an example here. This 
makes problem (8) a costly problem, especially for more complex (realistic) models with more 
parameters. However, the calculation of the objective is suitable for parallelization since it is a sum. The 
result of solving problem (8) is a set of values for the homogeneous parameters 𝜃𝜃. 
 Step 2 consists of solving the set of 𝑁𝑁 one dimensional problems 
 
min
𝑣𝑣𝑖𝑖

𝐸𝐸𝑖𝑖(𝑣𝑣𝑖𝑖,𝜃𝜃) ,  i  =  1,2, … ,𝑁𝑁, 
 

(9) 

 
where the homogeneous parameters 𝜃𝜃 have the values obtained from step 1. These problems are one 
dimensional and can be solved in parallel, and thus computationally cheap compared to problem (8) and if 
treated carefully it is likely that the global minimum of each problem can be found. 

Since the objective function of the problem for the homogeneous parameters is likely to contain 
discontinuities (when a small shift in the value of a parameter leads to that the agent passes another agent 
on the other side compared to without the parameter shift), a derivative free optimization algorithm is 
preferable. In the demonstration of the method we apply a genetic algorithm in line with [9]–[11], since 
this also can handle the existence of a large set of local minima. 

The advantage of the proposed method over trying to directly solve problem (5) is that it reduces the 
hard problem (5) to the much simpler problems (7-9). However, there is no guarantee that the method will 
find the global minimum of problem (5), so careful analysis of the results is required to check that the 
results are reasonable. 
 
3. Case 
We now demonstrate the proposed method on trajectory data collected at Stockholm central station during 
the afternoon peak through manual annotation of video recordings [14]. The annotation was made by 
estimating the center of mass of the pedestrian by the point half way between their feet when they were 
maximally separated or together. This annotation method almost completely removes the swaying 
problem encountered when tracking the heads of the pedestrians but is slightly more labor intensive. 
 The observed area is approximately four by six meters, located in the middle of a wide passage, with 
dominating flows in the direction along the longer sides of the observed area. There are no fixed obstacles 
in, or directly adjacent to, the observed area. The data consists of 1841 trajectories, of which 1705 remain 
after the filtering related to equation 7, and the flow aggregated over 15 min intervals varies in the range 
1980-3960 pedestrians per hour. To improve the solution time of problem (8), bounds on the 
homogeneous parameters are introduced according to: τ ∈ [0.01,2] s, 𝐹𝐹 ∈ [0.01,5] m/s2, 𝐹𝐹 ∈ [0.01,3] m, 
𝑇𝑇 ∈ [0,3] s. 
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3.1. Results 
The result of the calibration in terms of the optimal values of the homogeneous parameters are given in 
table 1, together with corresponding values from two similar studies, and the resulting desired speed 
distribution is presented in figure 1. The estimated parameters do not deviate strongly from the results of 
the previous studies. The anticipation time estimated here is a bit high compared to the other studies and it 
seems to be compensated by a lower value of the range scale of the social force. The mean of the desired 
speed distribution is 1.25 m/s, its support is between 0.46 m/s and 3.0 m/s, and its standard deviation is 
0.29 m/s. 
 

Table 1: Estimation results from the present study and from the literature for comparison. 
 

Study 𝜏𝜏 [s] 𝐹𝐹 [m/s2] 𝐹𝐹 [𝑚𝑚] 𝑇𝑇 [𝑠𝑠] 
This study 0.72 0.58 0.45 2.0 
Johansson et al. (2009) [10] 0.25 0.59 0.60 1.3 
Zanlungo et al. (2011) [11] 1.2 0.80 0.62 1.7 

 
 

 
 

Fig. 1: A kernel density estimate of the estimated desired speed distribution. 
 
3.2. Analysis 
Since there is no proof that the proposed method converges to the global solution of problem (5), some 
analysis of the solution is provided here. In figure 2 the solution progress of the genetic algorithm used to 
solve problem (8) is displayed for the first, second, fifth and last iterations of the proposed method. As 
can be seen, 50 generations seem sufficient for the genetic algorithm, and the progress after the second 
iteration of the procedure is negligible. 

To the right in figure 2 the sensitivity of the objective functions to perturbations in each of the 
homogeneous parameters around the best found solution is presented. The objective is clearly sensitive to 
perturbations in all parameters except the anticipation time. That the data contain limited information on 
the anticipation time is expected due to the size of the observed area. If two agents are walking toward 
each other, each at a speed of say 1.3 m/s, and the anticipation time is 2 s, the agents will start reacting to 
each other at a distance approximately equal to the length of the observed area. 

The clear increase of the objective in the direction of each homogeneous parameter is an indication 
that the procedure may indeed have found the optimum, but it is far from certain. Also, even though the 
increase is clear it is rather small, indicating that either the data only contain limited information on the 
parameters, or that the parameters really should be heterogeneous over the population. In the case of 
strong heterogeneity over the population, the found solution would be a compromise and a shift in either 
direction would improve the fit for some trajectories and worsen it for others, thus giving a relatively flat 
objective. 
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Fig. 2: Left: The solution progress of problem (8) for the first, second, fifth, and last iteration of the proposed 
solution procedure. Right: The sensitivity of the objective function to changes in the homogeneous parameters. The 

changes are relative to the widths of the feasible interval for each parameter. 
 

To investigate the interdependence between the desired speed and the homogeneous parameters, the 
relative change in the solutions of a sample of the problems (9) to changes in each of the homogeneous 
parameters from the best found solution are presented in figure 3. Note that the presented relative change 
in the desired speed is the absolute relative change. This shows that the estimated desired speed indeed is 
dependent on the values of the homogeneous parameters, at least for some of the trajectories, even though 
this dependence is rather weak. 
 

 
 

Fig. 3: The sensitivity of the estimated desired speed, of a random sample of 100 pedestrians, to changes in the 
homogeneous parameters. 

 
The dependence is clearly stronger for the relaxation time and the range scale of the social force, 

than for the social force strength and the anticipation time. This seems reasonable, since an agent with a 
high value of the desired speed will tend to perform smaller evasive maneuvers then an agent with a low 
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value of the desired speed, due to the stronger desired force for a given directional change due to an 
interaction with another agent. A similar effect is obtained by decreasing the relaxation time or the range 
scale of the force, so it is reasonable to expect an interdependence between the desired speed and these 
two parameters. 
 
5. Discussion and conclusions 
We conclude that the method is able to estimate a desired speed distribution in slightly congested 
conditions that seems plausible, while further studies are needed to evaluate the accuracy and robustness 
of the estimation of the remaining, homogeneous, parameters. Also, it may be worth noting that the 
proposed method relies heavily on the use of individual trajectories, and it is hard to see any version of 
the method that does not, and the method thus has the drawbacks of any trajectory-based method. There is 
a risk that observed pedestrians close to the border of the observed area might be affected by pedestrians 
outside the observed area. However, this risk is reduced by removal of trajectories deviating too strongly 
after the solution of eq. 7. An important topic for future research is to verify the method against synthetic 
data and test for how high densities it is capable to estimate the desired speed distribution. 
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