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Abstract The increase in mixed traffic with weak lane discipline (2D mixed traffic) has
attracted significant research attention. To better replicate and understand traffic with
weak lane discipline, this study examined the variation in response time relative to the
position of the leading vehicle, including lateral shifts. Through experiments conducted
using a driving simulator and functional fitting, we demonstrated that changes in response
time due to longitudinal and lateral locational shifts are well represented by linear and
exponential functions, respectively. Additionally, we proposed an extended formulation
of the 2D optimal velocity model (2D OVM) that incorporates variable response times,
termed the 2D OVM with varying sensitivities (2D OVMVS). The stability condition was
derived using a linear approximation. A comparative analysis of the phase diagrams of the
2D OVM and 2D OVMVS, along with a sensitivity analysis, revealed that the proposed
2D OVMVS exhibited a larger unstable region in the phase diagram and lower stability
in stable regions than the 2D OVM. As a result, in 2D traffic with weak lane discipline,
the equilibrium formation of vehicles was more susceptible to disruption. Our findings
indicate that variable response times, as observed in this study, substantially influence the
stability of no-lane traffic. Unlike fixed-response models, incorporating response time
variability accentuates unstable tendencies. This underscores the necessity of accounting
for non-uniform response time distributions in future traffic models.
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1. Introduction

Vehicular traffic congestion has become a critical issue in both developing and developed
countries, contributing to increased travel times, energy waste, elevated pollution levels,
and adverse health effects [1–3]. As highlighted in previous studies [4–10], vehicular traf-
fic in developing countries exhibits distinct characteristics that differ from those observed
in developed countries. In general, vehicular traffic can be classified based on the intensity
of lane discipline and the heterogeneity of vehicle types, as illustrated in Fig. 1. Traffic
observed in many developing countries is categorized as two-dimensional (2D) mixed
traffic in Fig. 1 because it typically consists of various vehicle types with weak lane dis-
cipline. In 2D traffic, vehicle interactions occur in multiple directions more intensively
than in one-dimensional (1D) traffic, where lane discipline is more strictly maintained.
Consequently , speed disturbances that trigger congestion can propagate and amplify in
multiple directions. This characteristic underscores the importance of incorporating such
dynamics into mathematical analyses and replication models for 2D traffic.

Figure 1 Classification of traffic by lane discipline intensity and heterogeneity of vehicle type.

Stability is a key indicator of whether velocity disturbances, which contribute to con-
gestion, will amplify over time. A traffic condition is considered (linearly) stable when ve-
hicle velocities remain synchronized, and any small velocity disturbance affecting certain
vehicles is attenuated as it propagates to following vehicles, preventing congestion caused
by such disturbances. Therefore, the stability condition—satisfied by stable traffic but
not by unstable traffic—is essential for understanding traffic characteristics and dynam-
ics. As foundational studies on the stability of 2D mixed traffic, research has focused on
mathematical models [11, 12] to replicate the diverse behaviors of various vehicle types,
such as speeds, accelerations, and headways [13–16]. Additionally, studies have explored
the stability of one-dimensional (1D), i.e., lane-based, mixed traffic [17–20]. These stud-
ies [17–20] have successfully demonstrated that the stability condition varies based on the
composition ratio of vehicle types in traffic and the sequence of leader-follower vehicle
pairs. However, these studies assumed lane-based traffic without considering overtaking
maneuvers or the relative lateral positions of vehicles.
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Attempts have also been made to theoretically investigate the stability of 2D mixed
traffic using the lattice hydrodynamics (LH) model [21]. Mohan et al. extended the LH
model to incorporate overtaking in 2D mixed traffic [22], while Chattopadhyay et al. ap-
plied this model to compute statistical indices for assessing regime shifts in traffic flow
and analyzing linear stability [23]. The LH model computes the density, speed, and flow
of each vehicle type at a macroscopic level based on the continuity equation. In con-
trast, microscopic models, such as car-following models, determine driver acceleration
individually based on vehicle velocity, the distance to surrounding vehicles, and velocity
differences. Microscopic models explicitly represent the behavior of individual drivers
and vehicle types, which have been extensively studied in prior research [13–16]. By
simulating the behavior of a single vehicle, these models reproduce overall traffic flow.
Thus , microscopic models are more suitable than the LH model for applications requir-
ing precise modeling of driver behavior and individual vehicle interactions to assess their
effects on traffic flow.

In fact, several studies have investigated 2D traffic using microscopic models. For in-
stance, various models for lateral vehicle maneuvering have been proposed to replicate
lateral movements distinct from lane-based 1D traffic [24–27]. Oketch applied fuzzy
logic—a computational approach designed to handle approximate reasoning—to repre-
sent the arbitrary yet discrete lateral positions of vehicles. Furthermore, by utilizing traf-
fic data from Nairobi, Kenya, he successfully derived parameters for microscopic models
describing both longitudinal and lateral vehicle behavior [28]. Kanagaraj et al. developed
a 2D vehicular model and estimated its parameters [29]. In their model, lateral behavior
was represented using continuous equations rather than discrete ones. These studies have
primarily focused on reproducing traffic through simulation but have not yet explored
stability considerations within microscopic models. Beyond simulation studies, it is es-
sential to gain insights through theoretical approaches, such as the theoretical derivation
of stability conditions, to examine how the detailed behavior of individual vehicles and
drivers influences overall traffic flow in 2D mixed traffic. Such theoretical insights offer
the advantage of enhancing the efficiency of simulation studies by validating their results
and providing a broader perspective on parameter selection.

For example, the theoretical stability of two-lane traffic has been investigated while
considering factors such as heterogeneity [30], horn effects [31], and V2V communication
technology [32]. In these studies, models resembling 2D traffic are employed, where
vehicle acceleration and deceleration are influenced by neighboring vehicles with lateral
deviations in adjacent lanes. However, these studies still assume the presence of lanes or
imaginary lane structures and do not fully capture the characteristics of 2D traffic, where
velocity disturbances propagate in multiple directions.

As an example of a model and stability analysis in which disturbances can propagate
in all directions without any lane-based assumptions, Nakayama’s 2D Optimal Velocity
Model (OVM) [33] and the microscopic model for lane-less traffic [34] can be referenced.
However, it is important to note that the aforementioned microscopic models, including
the 2D OVM, have only considered variations in the intensity of driver reactions to lat-
eral displacement in 2D traffic. Based on previous perception and psychological experi-
ments [35,36], it is reasonable to assume that lateral displacement influences not only the
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intensity of reactions but also drivers’ response times. To summarize the discussion so
far, to the best of our knowledge, the following evaluations have not yet been conducted:

• Whether response time varies with the position of the leading vehicle, and, if so, a
quantitative measurement of such changes.

• The assessment of its impact on the stability of 2D traffic.

When comparing Nakayama’s 2D OVM [33] and the microscopic model for lane-less
traffic [34], including the 2D OVM, OVMs can incorporate a sensitivity parameter that
essentially represents the time duration required for speed adjustment. This adjustment
duration accounts for both the time drivers take to respond to the acceleration or deceler-
ation of leading vehicles and the time required to operate their pedals. If response time
varies with changes in the repulsive force based on lateral and longitudinal positions,
such variations in adjustment duration can be integrated into the sensitivity parameter,
representing the overall time required for speed adjustment, including response time.

Therefore, this study aimed to measure response times for both lateral and longitudinal
displacements through a subject experiment using a driving simulator and integrate these
response times into the adjustment duration in the 2D OVM to assess their impact on sta-
bility. Depending on the distribution of response times, it is possible to identify unstable
traffic conditions that cannot be predicted solely based on changes in reaction intensity
considered in previous studies. To clarify the effect of response time variations on the
stability of the assumed 2D traffic, this study compared the stability results obtained from
experiments with both the traditional model[33] and the newly proposed 2D OVM.

Through our investigation, we aim to achieve the following:

• Gain insights into how the conditions and rate at which velocity disturbances de-
velop in actual 2D traffic deviate from models that do not account for response
time.

• Observe the potential impact of response time on behaviors specific to 2D vehicle
platooning.

The remainder of this paper is structured as follows:

• We analyze response times for various lateral displacements using a driving simu-
lator (Section 2).

• To incorporate the observed response variations into the 2D OVM, we fit a func-
tion between relative position and the measured response time, selecting the model
equation based on the observed data (Section 3).

• Meanwhile , we extend the 2D OVM by modifying its sensitivity to integrate the ob-
served response time and derive the stability index of the extended model (Section
4).
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• Finally, we apply the observed response time to the extended 2D OVM and evaluate
its influence on stability by comparing it with Nakayama’s phase diagram (Section
5).

Thus, this study highlights the potential for evaluation errors when assessing the stability
of 2D traffic without accounting for response time.

2. Experiment to measure the response time

2.1. Experimental equipment

In the experiment, a fixed-base driving simulator (DS) equipped with five monitors was
used (refer to Fig. 2). The behavior of the ego vehicle was simulated using Carsim by
Mechanical Simulation, while the leader vehicle was controlled using DS-nano- by Ad-
vanced Solutions Technology Japan. Both systems operated at a calculation frequency
of 10 ms. Additionally, force feedback was implemented for the ego vehicle’s steering.
A button was mounted on the steering wheel that the driver could press and hold. This
button was used to respond to the leader vehicle’s deceleration. Further details are pro-
vided in Sec. 2.2. To prevent potential influences on the driver’s response to the leader
vehicle’s behavior, background elements such as urban scenery were not depicted, and
no additional road environments were included aside from the road and the leader vehi-
cle. Additionally, the speedometer, tachometer, rearview mirror, and side mirrors were
displayed on the DS screen.

Figure 2 Driving simulator used in the experiment.

2.2. Experimental method

The experiments described here are based on results previously presented by the authors
in [37]. Fig. 3 illustrates the experimental setup. In this setup, two vehicles, a leader
(right, colored orange) and a follower (left, colored yellow), traveled at a steady speed of
17 m/s on a straight road. The follower acted as the ego vehicle in the experiment. No
other vehicles were present except for the leader and the follower. At the beginning of
each trial, the leader’s position was randomly selected within the ranges dx1 to dx3 and
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from dy1 to dy3. Both vehicles maintained a constant velocity of 17 m/s in a straight
line until the leader began to decelerate. Although subjects held the steering wheel and
pedals from the start of the trial, they were not allowed to operate them until the leader
initiated deceleration. At the moment the leader started decelerating, its position was
ensured to be at the predefined dx,dy coordinates relative to the ego driver. At a random
moment, the leader was programmed to abruptly reduce its speed by 5 m/s, resulting in a
theoretically infinite deceleration within the simulator. While such a deceleration exceeds
what is observed in real vehicles, this configuration was intentionally adopted to provide
a clear and consistent stimulus for accurately measuring the subject’s reaction time to the
leader’s deceleration. Then, upon noticing the leader’s deceleration, the subject pressed a
button. The response time was defined as τ = tbutton − tdec, where tbutton is the time when
the button was pressed, and tdec is the time when the leader began to slow down. After
pressing the button, the participant engaged in braking and steering maneuvers to avoid
a collision. Prior to the experiment, participants were thoroughly trained on the required
actions in response to the leader’s sudden braking. Notably, subjects were not permitted
to initiate any avoidance maneuvers until after pressing the button.

Figure 3 Situation of the experiment and location of the leader.

Fig. 3 illustrates that the experimental road is 10.4 m wide without any lanes. Both the
leading and following vehicles are 1.9 m wide. During the experiment, the leader’s posi-
tion relative to the follower was randomly varied across trials. The longitudinal distances
(dx) were set at 14 m (dx1), 34 m (dx2), and 54 m (dx3) from the center of the ego vehicle.
The figure also displays the corresponding time headways for these distances. The lateral
positions (dy) were set at 0 m (dy1), 1.5 m (dy2), and 3.0 m (dy3) to the left of the ego ve-
hicle’s center. The setup remained unchanged until the participants detected the leader’s
deceleration and pressed a button.

Regarding the method for setting dx, we first used the Intelligent Driver Model and its
parameters [38] to estimate that a following distance significantly shorter than 36 m at
a speed of 17 m/s would result in deceleration exceeding the “comfortable deceleration”
defined in [38]. Additionally, applying the two-second rule [39], which is commonly
recommended to prevent accidents, yields a time headway of 34 m. Based on this, the
intermediate value of dx (dx2) was set to 34 m, corresponding to a time headway of 2 s. To
determine the closest dx1, the authors conducted repeated trials on the driving simulator.
It was observed that with a time headway of 0.8 s, a collision could just barely be avoided
within the DS. Therefore, dx1 was set to 14 m (a headway time of 0.8 s). Lastly, dx3 was
placed equidistant from dx1 and dx2, providing additional margin for the time headway.
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dy3 was set wider than the vehicle’s width, ensuring that even when the leader decelerates
and approaches, it does not collide with the ego vehicle. Conversely, dy2 was set narrower
than the vehicle’s width, representing a position where the ego vehicle must respond to
avoid a collision despite the lateral offset. Additionally, dy1, dy2, and dy3 were configured
to have equal widths.

After familiarizing themselves with the driving simulator (DS), participants were pre-
sented with randomized combinations of these positions, experiencing each combination
three times. Data on the leader’s and follower’s positions, along with the timing of button
presses, were recorded for each trial.

To account for potential fatigue from the prolonged duration of DS experiments, the
study focused on data from one side. This approach ensured that the dataset was suffi-
ciently large for statistical analysis and model fitting while also minimizing the time each
participant spent in the experiment.

2.3. Subjects

Thirteen Japanese students took part in the study, as shown in Tab. 1. Their driving
frequency varied from once to three times a week to less than once every six months.

Table 1 Information regarding the subjects

Age (year) Avg. = 22.5, SD = 1.2
Driving experience (year) Avg. = 2.6, SD = 1.6
Gender Male = 9, Female = 4

2.4. Results

The results presented in this section and Sec. 3 have already been reported by the authors
in [37]. These findings[37] are here as they are essential for analyzing the proposed model
introduced in Sec. 4.

Fig. 4 illustrates the measured response times τ based on the leader’s positions. Each
bar represents the average response time across all subjects. The checkered boxes on
the left indicate the average response times for all lateral positions (dy) corresponding
to each longitudinal position (dx). Conversely, the outermost yellow boxes display the
average values for all longitudinal positions (dx) for each lateral position (dy). Fig. 4(b)
and Fig. 4(c) further break down these average response times from Fig. 4(a), with error
bars representing the standard deviations.

Initially, a three-way analysis of variance (ANOVA) was performed, considering the
longitudinal and lateral positions as well as trial repetitions. Due to the negligible im-
pact of repetitions, potential learning effects were disregarded. The Greenhouse–Geisser
correction was applied, and all factors were treated as within-subject factors. Signifi-
cant differences were observed for both longitudinal and lateral positions; however, their
interaction did not reach statistical significance.
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(a) (b) (c)

Figure 4 Response time distributions.

3. Function Fitting of the Response Time

We posit that response time is influenced by the combined effects of dx and dy. Given that
these effects did not exhibit any maximum or minimum values, we assumed increasing
functions for both dx and dy as the fitting functions. The equations presented here serve
as candidate models, where dx or dy is represented as q.

τq = Aq(q−Bq)+Cq (1)
τq = Aqexp(q−Bq)+Cq (2)
τq = Aqlog(q−Bq)+Cq (3)
τq = Aqatan(Bq(q−Cq))+Dq (4)

Tab. 2 presents the top three combinations of functions used to fit the observed re-
sponse time, ranked by their R2 values. A linear function and an exponential function
were found to be the most suitable for the longitudinal and lateral directions, respectively.
Additionally, Tab. 3 lists the fitted parameters of the best-performing functions for each
direction. The blue plane depicted in Fig. 5 represents the function fitted to dx and dy. It
is reasonable to infer that this function is appropriate, as response time naturally increases
with greater longitudinal distance from the leader [40, 41]. Additionally, there is a sharp
increase in response time when there is no lateral overlap, specifically when dy exceeds
the vehicle width of 1.9 m.

Table 2 Top three fitted functions and their R2 values.
Rank Function (longitudinal) Function (lateral) R2

1 linear exp 0.215
2 atan atan 0.204
3 linear linear 0.204
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Table 3 Fitted functions and parameters for the response time.

Variable Response time τ

R2 0.215
Effect Lateral Longitudinal
Function exp linear
Constant Ady (s) 0.11 Adx (s/m) 0.01

Bdy (m) 2.96 Bdx (m) 2.03
Cdy (s) 1.08 Cdx (s) −0.79

Figure 5 Fitting of the observed response times. The blue surface represents the fitted function, while
the green dots correspond to the observed response times. The vehicle depicted in the Figure
indicates the position of the ego vehicle.

4. Stability Condition in 2D Traffic Varying the Response
Time

4.1. Original 2D OVM and its Stability Condition

In [33], Nakayama et al. configured particles in triangular structures for numerical simu-
lations with periodic boundary conditions. As illustrated in Fig. 6, the acceleration of the
red particle j was influenced by six surrounding blue -checked particles k where k ranges
from 1–6. The remaining particles filled the entire simulation area in the same manner
as these seven particles. At equilibrium velocity, all particles traveled rightward. The
positions of these particles are represented by the vector x⃗ j(t) = (x j(t),y j(t)) where x j
and y j are the longitudinal and lateral positions of jth particle at time t, respectively. The
distance between the particles k and j is rk j. ϕ is the angle measured around the particle j.
The direction vector from particles j to k is expressed as n⃗k j. In summary, x⃗k–⃗x j = rk j⃗nk j.

Let a be the sensitivity parameter, constant value V⃗0 the “desired velocity,” and F⃗ the
interaction between particles. The acceleration of particles following the 2D OVM is
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Figure 6 Configuration of Particles that 2D OVM considers.

formulated as follows:

d2

dt2 x⃗ j = a
[{

V⃗0 +∑
k

F⃗ (⃗xk − x⃗ j)

}
− d

dt
x⃗ j

]
(5)

where
F⃗ (⃗xk − x⃗ j) = f (rk j)(1+ cosϕ )⃗nk j, (6)

f (rk j) = α[tanhβ (rk j −b)+ c] (7)

where α , β , b, and c are constants. The vector F⃗ represents the varying component of
the optimal velocity. As shown in Eq. 6, it depends on the direction ϕ and the distance
rk j of the particle. The constants α , β , b, and c are parameters of the function f , which
describes the variation due to rk j. The constants in Eq. 7 were set to the values used in the
2D OVM [33]: α = 0.25, β = 2.5, b = 1.0, and c =−1.0. Consequently, f

(
rk j
)

always
takes a negative value.

When the longitudinal wave originates from the direction ϕ = 0 in [33], the linear
stability condition is expressed as

a > 2{1+ cos(θs)} (A1 −A5)
2

A1 +A5
(8)

where Ak =
∂Fx

∂ (xk−x j)

∣∣∣∣
eq

and “eq” means the equilibrium state. θ represents the wavenum-

ber.
In the following section, we describe the process for obtaining stability conditions for

use in the stability analysis of the modified model. First, we assume an equilibrium flow,
meaning thatEq. 5 is equal to zero. Note that

x⃗ j = X⃗ j + v⃗t (9)

where X⃗ j is a constant position

X⃗ j =

(
X j
Yj

)
, (10)
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and

v⃗ =
(

vx
vy

)
(11)

is a constant-velocity vector under equilibrium flow. Variables with a bar above denote
equilibrium variables. Let ∆x j = (∆x j,∆y j) be a small fluctuation in the particle j. Then
we obtain

d2

dt2 ∆x j = a∑
k

{
Ak(∆xk −∆x j)+Bk(∆yk −∆y j)−

d
dt

∆x j

}
, (12)

d2

dt2 ∆y j = a∑
k

{
Ck(∆xk −∆x j)+Dk(∆yk −∆y j)−

d
dt

∆y j

}
(13)

where Ak =
∂Fx

∂ (xk−x j)

∣∣∣∣
eq

, Bk =
∂Fx

∂ (yk−y j)

∣∣∣∣
eq

, Ck =
∂Fy

∂ (xk−x j)

∣∣∣∣
eq

, and Dk =
∂Fy

∂ (yk−y j)

∣∣∣∣
eq

.

Let
∆x j = ei(θ(X j+pY j)−ωt), (14)

∆y j = p∆x j (15)

be the fluctuation in the longitudinal mode, where i =
√
−1 represents the imaginary unit

and θ ∈ [−π,π] denotes the dimensionless wave number. The term ω = α + iβ consists
of the angular frequency of the linear oscillation (negative value of α) and the oscillation
growth parameter (β ). The disturbance ei(θ(X j+pY j)−ωt) assumes that the region where the
particles are located is periodic. This periodicity enables the determination of whether a
small disturbance is amplified as it propagates between particles over an extended period.
As p is defined by tanϕ and denotes the direction of the longitudinal wave, p = 0. Then,
we obtain the dispersion relation as

ω
2 − iaω −2aA1

(
eiθS −1

)
−2aA5

(
e−iθS −1

)
= 0 (16)

where S = X1 −X j is the relative x position of particle 1 relative to j. In no-lane traf-
fic, speed disturbances also occur in the lateral direction of the road. However, stability
analysis was conducted in the p = 0 direction, as disturbances primarily occurring in
the longitudinal direction of the road influence following vehicles, ultimately leading to
congestion. The system is considered stable when the imaginary part of ω < 0. This
condition requires that

fOVM =
64
a2 (A1 −A5)

2 (1+ cos(θS))− 32
a
(A1 +A5)< 0. (17)

Eq. 17 can be rearranged to obtain a stability condition:

gOVM = 2{1+ cos(θS)} (A1 −A5)
2

A1 +A5
−a < 0. (18)
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4.2. Modification of 2D OVM to Apply Varying Response Time

Fig. 7 depicts the variation in the sensitivity of the 2D OVM. As described in Sec. 1, re-
sponse time can be regarded as part of the time duration required for velocity adjustment.
In this study, we considered the adjustment duration as the sum of the time required for
drivers to respond to the behavior of leading vehicles and the time needed to operate their
pedals. The adjustment duration is denoted as T , which is the inverse of the sensitivity
a in the 2D OVM, as shown in Fig. 7. The operation and response times are represented
by Tvadj and τ , respectively. The varying sensitivity is denoted as avar, and its inverse is
the varying adjustment duration Tvar. The variable avar (the reciprocal of Tvar) changes
with the response time τ and represents the sensitivity of speed adjustment relative to the
leader in the 2D OVMVS.

Here, we define Tvar as the sum of the response time τ and the “constant” operation
duration Tvadj. To determine the value of Tvadj, we subtracted the virtual response time
τ0,0—which corresponds to τ when both dx and dy are zero—from the constant T in
the 2D OVM. Notably, the constants T and a are varied in Sec. 5 to analyze the phase
diagram.

The response time τ0,0 represents the response time in a hypothetical scenario where
the following vehicle and the leading vehicle occupy the same space simultaneously. Al-
though such a scenario does not occur in reality, τ0,0 is derived as an extrapolated result
using the fitting function. We define Tvadj as the constant duration between the moment
the driver perceives the leader’s deceleration (after the response time τ) and the initia-
tion of their operation. The reciprocal of the sensitivity avar in 2D OVMVS, denoted
as Tvar, accounts for both Tvadj and the variable response time τ . That is, we assume
1/avar = Tvar = Tvadj + τ . Since the response time τ is measurable in this study, it is
necessary to determine Tvadj. Meanwhile, the reciprocal of the sensitivity a in the 2D
OVM, denoted as T , is assumed to include the same Tvadj along with a constant response
time. To determine Tvadj, it is essential to define the “constant response time” embedded
in the sensitivity of the 2D OVM. Although it is unclear which specific values of dx and
dy this “constant response time” corresponds to, we considered the scenario in which
Tvadj is maximized, that is, when (dx,dy) = (0,0). By subtracting τ0,0, we examined the
case where sensitivity is at its lowest when the variable τ is added. Furthermore, in the
2D OVMVS, τ is fitted as a function of dx and dy, with (dx,dy) = (0,0) as the origin.
Subtracting τ0,0 also simplifies the analysis.

Although we varied the response time or sensitivity in the 2D OVM for each particle
based on its relative position from particle j, the sensitivity in the original 2D OVM, de-
noted as a, remained constant and was independent of the summation in the formulation.
As a result, the original 2D OVM is not formulated as

d2

dt2 x⃗ j = ∑
k

a
[{

V⃗0 + F⃗ (⃗xk − x⃗ j)

}
− d

dt
x⃗ j

]
(19)

Therefore, we recapture the original 2D OVM as:

d2

dt2 x⃗ j =
K

∑
k=1

a
[{

V⃗0

K
+ F⃗ (⃗xk − x⃗ j)

}
− 1

K
d
dt

x⃗ j

]
, (20)
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Figure 7 Time duration adjustment in the sensitivity variation method.

k is the index of a particle that influences particle j, and K is the maximum number of
such particles. Based on this formulation, we obtain a 2D OVM by varying the sensitivity
as

d2

dt2 x⃗ j =
K

∑
k=1

ak

[{
V⃗0

K
+ F⃗ (⃗xk − x⃗ j)

}
− 1

K
d
dt

x⃗ j

]
. (21)

Hereinafter, this model is referred to as the 2D OVM with varying sensitivities (2D
OVMVS). Assuming the same scenario as in [33], where a particle is surrounded by six
others (i.e., K = 6 and k is from 1 to 6), Eq. 21 transforms into

d2

dt2 x⃗ j =
6

∑
k=1

ak

[{
V⃗0

6
+ F⃗ (⃗xk − x⃗ j)

}
− 1

6
d
dt

x⃗ j

]
. (22)

As previously mentioned, the primary objective of this study is to determine the influence
of response time on the stability of the assumed 2D traffic by comparing the stability
outcomes obtained from the 2D OVM and 2D OVMVS. Hence, the subsequent analysis
is based on the 2D OVM with six particles, for which stability conditions have already
been established.

4.3. Derivation of Stability Condition

Here, we introduce an approximate procedure to obtain a stability condition for 2D OVMVS.
All the procedure is described in App. A. In Sec. 4.1, we assumed the small fluctuation
of j under the equilibrium state. The same procedure, ignoring second-order microquan-
tities, induces

d2

dt2 ∆x j =∑
k

[
ake
{

Ak(∆xk −∆x j)

+Bk(∆yk −∆y j)−
1
6

d
dt

∆x j
}

+

{
ξke(∆xk −∆x j)+ηke(∆yk −∆y j)

}(
− 1

6
d
dt

∆x j

)]
,

(23)
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and

d2

dt2 ∆y j =∑
k

[
ake
{

Ck(∆xk −∆x j)

+Dk(∆yk −∆y j)−
1
6

d
dt

∆y j
}

+

{
ξke(∆xk −∆x j)+ηke(∆yk −∆y j)

}(
− 1

6
d
dt

∆y j

)]
,

(24)

where ake = a(X⃗k − X⃗ j), ξke =
∂ak

∂ (xk−x j)

∣∣∣∣
eq

, and ηke =
∂ak

∂ (yk−y j)

∣∣∣∣
eq

. The terms ξke and

ηke multiplied by −1
6

d
dt ∆x j or −1

6
d
dt ∆y j can be ignored because they are second-order

microquantities.
By introducing a small fluctuation in particle j to Eq. 14 and Eq. 15, we obtain the

dispersion relation

ω
2 +2a1e

{
A1(eiθS −1)+

iω
6

}
+2a5e

{
A5(eiθS −1)+

iω
6

}
+2a3e

iω
6

= 0. (25)

Similarly, by obtaining Eq. 17, we obtain the condition wherein the imaginary part of
ω is less than zero.

fOVMVS =

{
72

(a1e +a3e +a5e)
2

}2

(A1a1e −A5a5e)
2 (1+ cos(θS))

− 288

(a1e +a3e +a5e)
2 (A1a1e +A5a5e)< 0.

(26)

Note that Eq. 17 and Eq. 26 can be directly compared, as no constants or variables were
altered under the condition that the imaginary part of ω < 0. Rearranging Eq. 26, we
obtain the stability condition

gOVMVS = {1+ cos(θS)} (A1a1e −A5a5e)
2

A1a1e +A5a5e
− (a1e +a3e +a5e)

2

18
< 0. (27)

5. Effect of Varying Response Time on Stability

5.1. Stability Shift due to the Varying Response Time

Fig. 8(a) and Fig. 8(b) illustrate the stable and unstable regions for parameter sets of sen-
sitivity and distance. In Fig. 8(a), the values of gOVM in Eq. 18 are shown. As evident,
under relatively low sensitivity within a certain range (i.e., a prolonged duration for ve-
locity adjustment), the flow became unstable within a specific range of distances between
particles.

Fig. 8(b) presents the values of gOVMVS from Eq. 27. The vertical axis represents the
“standard a for avar”, which denotes the value of a used to compute avar as illustrated
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in Fig. 7. In other words, avar in 2D OVMVS is computed by subtracting τ0,0 from the
reciprocal of this “standard a” and then adding τ . Additionally, a constant a was applied to
particles behind the focusing particle (k = 5 and 6) as only the response time variations of
“leaders positioned ahead of the ego vehicle were observed. In Fig. 8(b), the value of a for
particles k = 5 and 6 (abehind) was equal to the standard a. No significant difference was
observed between the plots of gOVM and gOVMVS in Fig. 8(a) and Fig. 8(b), respectively.

(a) (b)

Figure 8 Phase diagrams for (a) 2D OVM and (b) 2D OVMVS.

As described in Sec. 4.3, Eq. 17 and Eq. 26 can be directly compared. Therefore,
we plotted the comparison results in Fig. 9, which is divided into four regions based on
the stability definitions outlined in Tab. 4 for both OVM and OVMVS. Here, the term
”shift” in Tab. 4 indicates whether the values of fOVMVS increased or decreased relative to
fOVM, that is, whether the introduction of a varying response time led to stabilization or
destabilization of the flow. However, stating that the flow is stabilized does not necessarily
imply that the system is stable overall. The term “stabilize” in Tab. 4 means that the
stability index fOVM of the 2D OVM is greater than the stability index fOVMVS of the
2D OVMVS. If either fOVM or fOVMVS is less than zero, the flow can be considered
stable, and smaller values of fOVM or fOVMVS indicate a faster convergence of velocity
disturbances. Even when the values are greater than zero, smaller values of fOVM or
fOVMVS that are closer to zero suggest a slower growth rate of disturbances. Conversely,
the term ”destabilize” represents the opposite situation.

In Tab. 4, the term “more stable” means that the region was already stable in the 2D
OVM but becomes even more stable in the 2D OVMVS when response time variation
is considered, as indicated by a smaller fOVMVS. “More unstable” means that the region
was already unstable in the 2D OVM but becomes even more unstable in the 2D OVMVS.
“Still stable” means that the region was stable in the 2D OVM, though it remains stable
even if it is destabilized in the 2D OVMVS. “Still unstable” means that the region was
unstable in the 2D OVM, though it remains unstable even if it is stabilized in the 2D
OVMVS. The regions in Table 3 are defined based on the above criteria. Note that Areas
V and VI appear in Sec. 5.2 afterward.
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Figure 9 Trend variation when applied the varying response time.

Table 4 Phase diagram shift due to the varying response time

Area Stability in OVM shift Stability in OVMVS
I Stable Stabilize More stable
II Unstable Destabilized More unstable
III Unstable Stabilized Still unstable
IV Stable Destabilized Still stable
V Stable Destabilized Change to unstable
VI Unstable Stabilized Change to stable

From Fig. 9 and Tab. 4, we conclude that the introduction of a varying response time
did not alter the overall stability mapping. However, in most phase diagrams, the stable re-
gion became more stable (Area I), while the unstable region became more unstable (Area
II). This suggests that incorporating response time variability accelerated the transition
between flow states when small disturbances occurred.

5.2. Sensitivity Analysis on Stability Shift

In Sec. 5.1, we assumed that abehind was equal to the standard a, and that rk j = 1 corre-
sponded to 1m in the response time distribution shown in Fig. 5.

However, abehind would be smaller than the standard a because drivers typically react
more slowly to vehicles behind them compared to those in front. Thus, we formulated the
relationship between the standard a and abehind as

abehind =
standard a

kbehind
(28)

where kbehind is a coefficient. We conducted a sensitivity analysis. when kbehind = 1 and
1.3.

The distance rk j used in 2D OVM and OVMVS is inherently dimensionless, while the
distances defined on the DS are measured in meters. To bridge this gap, we introduced a
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proportionality coefficient kdist, where the dimensionless length in 2D OVM and OVMVS
is denoted as R, and the corresponding length on the DS, measured in meters, is denoted as
D. Additionally, the headways between vehicles were not smaller than 1 m, for example,
in the free-flow phase. Based on this, we formulated the relationship between the distance
D(m) in the response time distribution shown in Fig. 5 (where response time depends on
the leader location), and the dimensionless distance R(−) in Fig. 6 as

D(m) = R(−)× kdist (m), (29)

where kdist (m) is a coefficient greater than 1 m. Since Fig. 5 was obtained from DS,
wherein distances are specified in meters, we have added the (m) unit to D.

We conducted a sensitivity analysis for kdist = 0.7m, 1m, 2m and 3m. Fig. 10 shows
the shift in the phase diagram owing to the varying response time for respective kbehind
and kdist. Areas I–V indicate the shifts in the phase diagram, as shown in Tab. 4. First, the
increase in kbehind affected the shift. The respective subfigures for kbehind = 1.3 exhibited
larger area IV than those for kbehind = 1.0. Although the stability was disturbed in Area
IV, it was still stable. Furthermore, the figures for kbehind = 1.3 exhibited an area V, where
the stability changed to unstable.

Moreover, an increase in kdist exerted a similar effect on kbehind = 1. In other words,
both areas IV and V increased. Besides, kdist < 1 also corresponds to drivers who have a
quicker response time than the subjects because they are more used to traffic with weak-
lane discipline. In both cases of kbehind = 1.0 and 1.3, the trends in the phase diagrams
remained unchanged.

In summary, in the 2D OVMVS model, the equilibrium hexagonal arrangement col-
lapsed more quickly in areas classified as unstable in the 2D OVM model. Further-
more, the unstable region expanded within a certain range of headway distances in the
2D OVMVS compared to the 2D OVM.

6. Discussion

In high -density conditions where overtaking is impossible, the deceleration wave is am-
plified and propagates through the unstable region. However, instability does not neces-
sarily indicate the formation of stop-and-go waves; rather, it signifies that disturbances
are amplified, leading to the breakdown of the hexagonal configuration.

In scenarios where overtaking is possible, the findings of this study suggest that actual
2D traffic is less likely to maintain a steady formation compared to previous models that
do not account for variations in response time. In other words, 2D traffic exhibits a greater
tendency toward overtaking due to the distribution of response times, even in the absence
of motorcycles or autorickshaws that can easily maneuver through traffic.

Previous studies have explored the factors influencing response time. For instance,
[42] interrevealed that response time varies depending on road geometry. Additionally,
studies examining the impact of response time on the stability of vehicle platoons include
[43], which used nonlinear analysis of the OVM to show that a decrease in sensitivity (the
inverse of response time, as used in this study) expands the unstable region. Kesting et
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al. [44] introduced numerical update intervals in addition to response time, demonstrating
that an increase in either factor leads to instability in vehicle platoons. Furthermore, they
found that both factors influence stability in a similar manner. Similarly, [45] assumed
that driver response time varies due to temporal and spatial anticipation, which enhances
stability. Their simulation-based stability analysis identified response time thresholds
beyond which speed disturbances result in collisions.

A study strongly related to the present work is that of Tomoeda et al. [46], which, based
on real-world data, suggested that response time decreases as traffic density increases.
Tomoeda et al. [46] focused on lane-based highway traffic, and their findings align with
the longitudinal observations of the present study. Moreover, incorporating this response
time variation into the Payne model led to the conclusion that traffic flow stability be-
comes density-dependent, where disturbances that grow at low density are stabilized at
high density. Although the study by Tomoeda et al. focused on lane-based traffic, its
conclusions correspond to Area II and the region of small rk j within Area I in Figure 9 of
this paper.

The findings of this study are consistent with prior research on the effects of response
time on traffic flow stability, particularly regarding trends in longitudinal headway and
response time variation. However, unlike previous studies, the present work considers
no-lane-based traffic. In no-lane-based traffic, it is hypothesized that speed disturbances
arising from instability may not only lead to stop-and-go waves or collisions but also
trigger overtaking and passing behavior. The novel contributions of this study include (1)
demonstrating that response time varies not only with longitudinal headway but also with
lateral headway, (2) fitting these variations into functions implemented as part of the 2D
OVMVS, and (3) showing through stability analysis that the distribution of response time
induces the early collapse of hexagonal configurations and promotes the occurrence of
overtaking and passing.

Regarding future research, further investigation is needed to determine how the inabil-
ity to maintain formation affects congestion in 2D traffic. To the best of our knowledge,
there are currently no established indicators for assessing whether disturbances are ampli-
fied or mitigated by the active alternation of vehicle order that occurs in traffic at densities
where overtaking is possible.

Additionally, this study did not measure the distribution of reaction time to the vehicle
behind the ego vehicle; instead, it assumed it to be constant. Although the sensitivity
analysis provided an approximate trend, the distribution of reaction time to the vehicle
behind the ego vehicle should be measured and incorporated into the sensitivity parameter
avar.

7. Conclusion

To enhance the replication and comprehension of traffic scenarios characterized by weak
lane discipline, this study investigated the variability in response time to both longitudinal
and lateral shifts concerning the relative position of the leader. Through experimentation
utilizing a DS, we demonstrated that response time is influenced by the relative position
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of the leader. Additionally, we applied functional fitting techniques to model the response
time distribution, identifying that linear and exponential functions were suitable for the
longitudinal and lateral directions, respectively.

Moreover, we expanded the formulation of the 2D OVM and introduced the concept
of 2D OVMVS, which incorporates variable sensitivity corresponding to the variable re-
sponse time. We subsequently derived the stability condition for the 2D OVMVS.

A comparative analysis of the phase diagrams obtained with the 2D OVM and 2D
OVMVS, along with a sensitivity analysis of stability shift, revealed that the 2D OVMVS
exhibited a wider unstable region in the phase diagram and lower stability, even within
stable regions than the 2D OVM. This finding suggests that in 2D traffic characterized by
weak lane discipline, vehicle equilibrium is more vulnerable to disruption. The distribu-
tion of response times appears to undermine stability, even within the framework of linear
analysis. This highlights the contribution of response time variability to the tendency of
vehicles in 2D traffic to engage in frequent overtaking or weaving maneuvers, particularly
as density increases beyond the aligned free-flow phase.

This study demonstrates that the distribution of response times negatively affects the
stability of 2D traffic. To counteract this destabilizing effect [47], potential strategies in-
clude enhancing drivers’ awareness of their vehicle’s historical speed differentials relative
to desired speeds, utilizing auditory alerts (e.g., honks) from following vehicles, and im-
plementing driver assistance systems capable of monitoring distances between multiple
vehicles ahead [48].

However, further investigation is required to assess the impact of this inability to main-
tain formation on congestion occurrence within 2D traffic. In this context, nonlinear
analysis is a crucial avenue for future research. Additionally, the development of new
evaluation metrics is imperative to determine whether disturbances are amplified or miti-
gated in traffic scenarios characterized by dynamic variations in vehicle formation.

Regarding the stability discussion using 2D OVM and OVMVS, this study examined
whether velocity perturbations from the equilibrium state grow or dissipate. As a result,
we successfully found that the initiation of overtaking and passing maneuvers from a
steady 2D traffic state is accelerated by the distribution of response times. However,
in heterogeneous 2D traffic, such as those observed in developing countries, it remains
unclear how response time variability and differences among individual vehicles influence
overall system behavior. Furthermore, this study does not address the impact of response
time distribution on macroscopic traffic characteristics (such as density vs. flow) in non-
equilibrium states where overtaking, passing, and velocity perturbations already exist.

To investigate the effect of response time distribution on stability, hexagonal vehicle
arrangements were applied in this study to facilitate comparison with the 2D OVM, for
which a theoretical measure of stability has already been established. Additionally, the
2D OVM and 2D OVMVS can maintain steady states through hexagonal configurations.
Developing a model capable of preserving formations in other heterogeneous vehicle ar-
rangements would further clarify the influence of response times on more realistic 2D
traffic scenarios. The microscopic model for lane-less traffic [34] discusses stability un-
der time-varying leader-follower relationships and configurations beyond the hexagonal
arrangement. If this model could integrate variations in response time, it would enable a



20 A. Nagahama et al.

more realistic theoretical evaluation of the stability of no-lane traffic.
Moreover, several improvements should be implemented in future DS experiments.

First, measuring response times while accounting for velocity differences between the
leader and follower is essential for further understanding traffic stability in environments
lacking lane discipline. Second, this study assumed symmetrical response time distribu-
tions for the left and right sides; future research should validate this assumption. Third,
in this experiment, response time was measured based on a single leader. Consequently,
there may be deviations from actual response times in situations where multiple vehi-
cles influence driver behavior, as is commonly observed in real-world traffic or 2D OVM
simulations. Conducting further experiments with participants is necessary to refine the
model.
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A. Stability condition of 2D OVMVS

The extended 2D OVM (2D OVMVS) is formulated as follows:

d2

dt2 x⃗ j = ∑
k

ak

[{
V⃗0

6
+ F⃗ (⃗xk − x⃗ j)

}
− 1

6
d
dt

x⃗ j

]
. (30)

Herein, ak = a(⃗xk − x⃗ j), which is a function of the relative position.
Let us assume Eq. 30 has a solution x⃗ j for the equilibrium flow under a hexagonal

formation, where

x⃗ j = X⃗ j + v⃗t, (X⃗ j: constant vector, v⃗ =
(

vx
vy

)
: constant vector).

Then, the solution satisfies

0⃗ = ∑
k

ake

[{
V⃗0

6
+ F⃗(X⃗k − X⃗ j)

}
− 1

6
v⃗
]
,

i.e.,

0 = ∑
k

ake

[{
V0

6
+Fx(X⃗k − X⃗ j)

}
− 1

6
vx

]
(31)

0 = ∑
k

ake

[{
Fy(X⃗k − X⃗ j)

}
− 1

6
vy

]
, (32)
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where
ake = a(X⃗k − X⃗ j)

Hereafter, they are referred to as Fx(X⃗k − X⃗ j) = Fxe, Fy(X⃗k − X⃗ j) = Fye.
Substituting a small disturbance,

x⃗ j = x⃗ j + ∆⃗x j, ∆⃗x j =

(
∆x j
∆y j

)
into Eq. 30, we obtain

d2

dt2 x⃗ j =∑
k

ak
(
(⃗xk− x⃗ j)+(∆⃗xk−∆⃗x j)

)[ v⃗0

6
+F⃗
(
(⃗xk− x⃗ j)+(∆⃗xk−∆⃗x j)

)
− 1

6

( d
dt

∆⃗x j+ v⃗
)]

⇔ d2

dt2 ∆⃗x j

=∑
k

[
ak
(
(X⃗k − X⃗ j)+(∆⃗xk − ∆⃗x j)

)
:::::::::::::::::::::::::::

{
V⃗0

6
+F⃗
(
(X⃗k − X⃗ j)+(∆⃗xk − ∆⃗x j)

)
::::::::::::::::::::::::::

− 1
6

( d
dt

∆⃗x j+ v⃗
)}]
(33)

The first section using the wavy line in Eq. 33 can be expanded as

ak(X⃗k − X⃗ j)+
∂ak

∂ (xk − x j)

∣∣∣∣
X⃗k−X⃗ j

(∆xk −∆x j)+
∂ak

∂ (yk − y j)

∣∣∣∣
X⃗k−X⃗ j

(∆yk −∆y j)

= ake +ξke(∆xk −∆x j)+ηke(∆yk −∆y j).

Here we defined ak(X⃗k − X⃗ j) = ake, ∂ak
∂ (xk−x j)

∣∣∣∣
X⃗k−X⃗ j

= ξke, and ∂ak
∂ (yk−y j)

∣∣∣∣
X⃗k−X⃗ j

= ηke. The

second section with wavy line in Eq. 33 can be expanded as

Fxe +
∂Fx

∂ (xk − x j)

∣∣∣∣
X⃗k−X⃗ j

(∆xk −∆x j)+
∂Fx

∂ (yk − y j)

∣∣∣∣
X⃗k−X⃗ j

(∆yk −∆y j),

and

Fye +
∂Fy

∂ (xk − x j)

∣∣∣∣
X⃗k−X⃗ j

(∆xk −∆x j)+
∂Fy

∂ (yk − y j)

∣∣∣∣
X⃗k−X⃗ j

(∆yk −∆y j).

Substituting these values into Eq. 33,

d2

dt2 ∆x j = ∑
k

[{
ake +ξke(∆xk −∆x j)+ηke(∆yk −∆y j)

}
{

V0

6
+Fxe +Ak(∆xk −∆x j)+Bk(∆yk −∆y j)−

1
6

( d
dt

∆x j + vx

)}]
, (34)
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and

d2

dt2 ∆y j = ∑
k

[{
ake +ξke(∆xk −∆x j)+ηke(∆yk −∆y j)

}
{

Fye +Ck(∆xk −∆x j)+Dk(∆yk −∆y j)−
1
6

( d
dt

∆y j + vy

)}]
, (35)

where Ak =
∂Fx

∂ (xk−x j)

∣∣∣∣
X⃗k−X⃗ j

, Bk =
∂Fx

∂ (yk−y j)

∣∣∣∣
X⃗k−X⃗ j

, Ck =
∂Fy

∂ (xk−x j)

∣∣∣∣
X⃗k−X⃗ j

, and Dk =
∂Fy

∂ (yk−y j)

∣∣∣∣
X⃗k−X⃗ j

.

Utilizing Eq. 31, and an approximation that ignores the second-order miniscule quan-
tities, Eq. 34 can be transformed as follows:

d2

dt2 ∆x j = ∑
k

[
ake
{

Ak(∆xk −∆x j)+Bk(∆yk −∆y j)−
1
6

d
dt

∆x j
}

+ξke(∆xk −∆x j)

{
V0

6
+Fxe −

1
6

d
dt

∆x j −
vx

6

}
+ηke(∆yk −∆y j)

{
V0

6
+Fxe −

1
6

d
dt

∆x j −
vx

6

}]
.

Because

∑
k

ake

{
V0

6
+Fxe −

vx

6

}
= 0

i.e., (
V0

6
+Fxe −

vx

6

)
= 0,

Eq. 34 becomes as

d2

dt2 ∆x j = ∑
k

[
ake
{

Ak(∆xk −∆x j)+Bk(∆yk −∆y j)−
1
6

d
dt

∆x j
}

+

{
ξke(∆xk −∆x j)+ηke(∆yk −∆y j)

}(
− 1

6
d
dt

∆x j

)]
. (36)

Using Eq. 32, and an approximation that ignores the second-order miniscule quantities,
Eq. 35 can be transformed as follows:

d2

dt2 ∆y j = ∑
k

[
ake
{

Ck(∆xk −∆x j)+Dk(∆yk −∆y j)−
1
6

d
dt

∆y j
}

+

{
ξke(∆xk −∆x j)+ηke(∆yk −∆y j)

}(
− 1

6
d
dt

∆y j

)]
(37)

Eq. 36 and Eq. 37 are differential equations satisfied by a small disturbance.
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Let us consider a longitudinal wave whose oscillation direction coincides with the
wavenumber vector. The directions of arrival of the waves are γ and tanγ := p. The
oscillations of each component of (X j,Yj) are

∆x j = ei(θ(X j+pY j)−ωt) (38)

∆y j = p∆x j (39)

In contrast, the oscillation caused by a transverse wave arriving in the same direction is
as follows:

∆x j = ei(θ(X j+pY j)−ωt) (40)

∆y j =−1
p

∆x j (41)

Substituting Eq. 39 into Eq. 36 and Eq. 37, we obtain equations satisfied by the longitu-
dinal components of the disturbance.

Eq. 36 ⇔ d2

dt2 ∆x j = ∑
k

[
ake
{
(Ak + pBk)(∆xk −∆x j)−

1
6

d
dt

∆x j
}

:::::::::::::::::::::::::::::::::::::::::

+

{
(ξke + pηke)(∆xk −∆x j)

(
− 1

6
d
dt

∆x j

)}
::::::::::::::::::::::::::::::::::::::

]
(42)

Eq. 37)
p

⇔ d2

dt2 ∆x j = ∑
k

[
ake
{(Ck

p
+Dk

)
(∆xk −∆x j)−

1
6

d
dt

∆x j
}

+

{(
ξke + pηke

)
(∆xk −∆x j)

(
− 1

6
d
dt

∆x j

)}]
(43)

Subtracting Eq. 43 from Eq. 42, we obtain:

0 = ∑
k

[
ake
{
(Ak + pBk −

Ck

p
−Dk)(∆xk −∆x j)

}]
. (44)

Further, using Eq. 41 in Eq. 36 and Eq. 37, we obtain equations satisfied by the trans-
verse wave component of the disturbance.

Eq. 36 ⇔ d2

dt2 ∆x j = ∑
k

[
ake
{
(Ak −

Bk

p
)(∆xk −∆x j)−

1
6

d
dt

∆x j
}

+

{
(ξke −

ηke

p
)(∆xk −∆x j)

(
− 1

6
d
dt

∆x j

)}]
(45)
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− p×Eq. 37 ⇔ d2

dt2 ∆x j = ∑
k

[
ake
{(

− pCk +Dk
)
(∆xk −∆x j)−

1
6

d
dt

∆x j
}

+

{(
ξke −

ηke

p

)
(∆xk −∆x j)

(
− 1

6
d
dt

∆x j

)}]
(46)

Subtracting Eq. 46 from Eq. 45, we obtain

0 = ∑
k

[
ake
{
(Ak −

Bk

p
+ pCk −Dk)(∆xk −∆x j)

}]
. (47)

From the definition, A1 = A2, A3 = A4, A5 = A6. If the response time (or sensitiv-
ity) Ake is also x-axis symmetric, A1e = A2e, A3e = A4e, A5e = A6e.

Considering a longitudinal wave arriving from γ = 0°⇔ p = 0, the following equation
is obtained: ∆x j = ei(θX j−ωt) = eiθX je−iωt , which we substitute into Eq. 42.

In the first section, using the wavy line in Eq. 42 yields

a1e{A1(eiθX1 − eiθX j)+
iω
6

eiθX j}e−iωt

+a2e{A2(eiθX2 − eiθX j)+
iω
6

eiθX j}e−iωt

+a3e{A3(eiθX3 − eiθX j)+
iω
6

eiθX j}e−iωt

+a4e{A4(eiθX4 − eiθX j)+
iω
6

eiθX j}e−iωt

+a5e{A5(eiθX5 − eiθX j)+
iω
6

eiθX j}e−iωt

+a6e{A6(eiθX6 − eiθX j)+
iω
6

eiθX j}e−iωt .

In addition, because the terms with a1e and a2e, and terms with a5e and a6e are the same,
respectively, and eiθX3 − eiθX j and eiθX4 − eiθX j are zero, The first section, with the wavy
line in Eq. 42 becomes

2a1e{A1(eiθX1 − eiθX j)+
iω
6

eiθX j}e−iωt

+2a5e{A5(eiθX5 − eiθX j)+
iω
6

eiθX j}e−iωt

+2a3e{
iω
6

eiθX j}e−iωt

= 2a1e{A1(eiθ(X1−X j)−1)+
iω
6
}eiθX je−iωt

+2a5e{A5(eiθ(X5−X j)−1)+
iω
6
}eiθX je−iωt
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+2a3e{
iω
6
}eiθX je−iωt (48)

However, assuming ξ1 = ξ2, ξ3 = ξ4, ξ5 = ξ6 (symmetric ak on the x-axis), the
second section with the wavy line in Eq. 42 becomes

ξ1e(∆x1 −∆x j)
iω
6

eiθX je−iωt

+ξ2e(∆x2 −∆x j)
iω
6

eiθX je−iωt

+ξ3e(∆x3 −∆x j)
iω
6

eiθX je−iωt

+ξ4e(∆x4 −∆x j)
iω
6

eiθX je−iωt

+ξ5e(∆x5 −∆x j)
iω
6

eiθX je−iωt

+ξ6e(∆x6 −∆x j)
iω
6

eiθX je−iωt

= 2ξ1e(∆x1 −∆x j)
iω
6

eiθX je−iωt

+2ξ5e(∆x5 −∆x j)
iω
6

eiθX je−iωt

= 2ξ1e(eiθ(X1−X j)−1)
iω
6
(
eiθX je−iωt)2

+2ξ5e(eiθ(X5−X j)−1)
iω
6
(
eiθX je−iωt)2 (49)

Furthermore, the left side of Eq. 42 as follows:

−ω
2eiθX je−iωt . (50)

From Eq. 48, Eq. 49, and Eq. 50, Eq. 42 is transformed by dividing both sides by
eiθX je−iωt :

−ω
2 = 2a1e{A1(eiθ(X1−X j)−1)+

iω
6
}

+2a5e{A5(eiθ(X5−X j)−1)+
iω
6
}

+2a3e
iω
6

+2ξ1e(eiθ(X1−X j)−1)
iω
6

ei(θX j−ωt)

+2ξ5e(eiθ(X5−X j)−1)
iω
6

ei(θX j−ωt) (51)
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Here, the terms with ξ1e and ξ5e are also second-order microquantities. Therefore,

−ω
2 ≈ 2a1e

[
A1(eiθ(X1−X j)−1)+

iω
6

]
+2a5e

[
A5(eiθ(X5−X j)−1)+

iω
6

]
+2a3e

iω
6
.

Here, by defining X1 −X j = S,X5 −X j =−S, we obtain

−ω
2 = 2a1e

[
A1(eiθS −1)+

iω
6

]
+2a5e

[
A5(eiθS −1)+

iω
6

]
+2a3e

iω
6
. (52)

Using Euler’s formula, Eq. 52 becomes

ω
2+−i

a1e +a3e +a5e

3
ω+(cos(θS)−1)(2a1eA1+2a5eA5)+isin(θS)(2a1eA1−2a5eA5).

The quadratic formula yields the following solutions.

ω =− i(a1e +a3e +a5e)

6

±1
2

√
−(a1e +a3e +a5e)2

9
−4{(cos(θS)−1)(2a1eA1 +2a5eA5)+ isin(θS)(2a1eA1 −2a5eA5)}

=− i(a1e +a3e +a5e)

6

×

[
1±

√
1+

72
(a1e +a3e +a5e)2{(cos(θS)−1)(a1eA1 +a5eA5)+ isin(θS)(a1eA1 −a5eA5)}

]
(53)

The amplitude of the wave is ei(⃗k·⃗x−ωt). Therefore, assuming ω = α + iβ , the stable
condition is β = Im(ω)< 0. Now, because

ω ÷
(
− i(a1e +a3e +a5e)

6

)
=− 6β

(a1e +a3e +a5e)
+ i

6α

(a1e +a3e +a5e)
,

the stable condition is

β = Im(ω)< 0

⇔ Real

(
1±

√
1+

72
(a1e +a3e +a5e)2{(cos(θS)−1)(a1eA1 +a5eA5)+ isin(θS)(a1eA1 −a5eA5)}

)
> 0
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Let us define

1±

√
1+

72
(a1e +a3e +a5e)2{(cos(θS)−1)(a1eA1 +a5eA5)+ isin(θS)(a1eA1 −a5eA5)} := a+ib,

1+
72

(a1e +a3e +a5e)2{(cos(θS)−1)(a1eA1 +a5eA5) := ρ , and

sin(θS)(a1eA1 −a5eA5) := φ .

To obtain a > 0, 4(1−ρ)> φ 2 must be satisfied. Therefore,

−4Ω(cos(θS)−1)(Ã1 + Ã5)> Ω
2 sin2(θS)(Ã1 − Ã5)

2

where
Ω =

72
(a1e +a3e +a5e)2 , Ãk = akeAk

should be satisfied. From this equation, we finally obtain a stable condition for longitudi-
nal waves in the p = 0 direction.

4 > Ω(1+ cos(θS))
(Ã1 − Ã5)

2

(Ã1 + Ã5)

⇔ (a1e +a3e +a5e)
2

18
> (1+ cos(θS))

(A1a1e −A5a5e)
2

A1a1e +A5a5e
.
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Figure 10 Sensitivity analysis on stability shift. Effects of kbehind and kdist are evaluated.
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