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Abstract The tractive force developed by energy consumption (EC) in a car engine pro-
duces its acceleration and sustains the motion against velocity dependent resistance forces.
In internal combustion engines, fuel burning entails pollutant emissions (PE) released into
the atmosphere. In vehicular traffic, EC and PE depend on the driving style. This paper
assumed that the transition rules in a traffic cellular automata (TCA) represent a driving
style, and its effect on EC and PE in TCA is studied. Extending empirical relationships,
we proposed models to estimate EC and PE in TCA from the velocity and acceleration
distributions, which we obtained by computer simulations for three well-known TCA.
The Nagel-Schreckenberg (NS) and Fukui-Ishibashi (FI) models, and a variant (NS+FI)
defined by combining the NS and FI rules, were considered. The FI driving style revealed
EC and CO2 emission rates dependent on the stochastic delay (p) only for low vehicu-
lar densities. We also detected that the larger EC and CO2 emission rates were 45.4kW
and 26.7g/s with no dependence on p. With NS and NS+FI driving styles, the larger en-
ergy consumption and CO2 emission rates occurred for small stochastic delays, 18.4kW
and 6.6g/s and 61.1kW and 30.2g/s for p =0.2. On average, for NS, FI, and NS+FI
models (p = 0.2), we obtained energy consumptions of 1.88, 2.60, and 2.76MJ/km, fuel
consumptions of 0.08, 0.12, and 0.13L/km, and CO2 emissions of 0.158, 0.460, and
0.562kgCO2/km. Our results agree with those (3.37MJ/km and 0.235kgCO2/km) of
petrol combustion car engines at 10km/L. This work may help in designing flow and
driving style scenarios to optimize vehicular traffic EC and reduce PE.
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1 Introduction

Vehicular traffic congestion is a severe problem worldwide, which causes substantial eco-
nomic loss, large energy consumption, and atmospheric pollution. For more than four
decades, traffic flow studies have attracted the interests of scientists from various disci-
plines. The scientific treatment of the traffic flow phenomena began with Robert Herman
in 1956 [1], and some years later, Herman and Prigogine started to study vehicular traffic
as a collective flow phenomenon, developing a kinetic theory for multi-lane traffic flow
using a Boltzmann like model for the vehicle interactions [2]. In the second half of the
1980s, a new line of research emerged for traffic flow simulation based on cellular au-
tomata [3], although its proper development started in the early 1990s with the models
proposed by K. Nagel and M. Schreckenberg [4] and by M. Fukui and Y. Ishibashi [5],
hereafter referred as the NS and FI models. Several excellent and complimentary reviews
of the different traffic flow approaches have been published. In 2000, D. Chowdhury,
L. Santen, and A. Schadschneider [6] wrote a critical review of microscopic models of
vehicular traffic from the perspective of statistical physics. They explained the guiding
principles behind all the main theoretical approaches, and presented detailed discussions
on the results obtained mainly from the particle-hopping models, emphasizing those for-
mulated using cellular automata techniques. D. Helbing [7], in 2001, reviewed the main
approaches to modeling pedestrian and vehicle traffic considering the empirical data. He
pointed out that fuel consumption would increase by 2–4 times when vehicle velocity
increases from 10 to 40 km/h which would lead to the same multiple increase of CO2
emission. The Helbing’s review included microscopic (particle-based), mesoscopic (gas-
kinetic), and macroscopic (fluid dynamic) models, paying attention to the formulation of
a micro-macro link, to aspects of universality, and to other unifying concepts, such as
a general modeling framework for self-driven many-particle systems. One year later, T.
Nagatani [8] published an overview of traffic physics, where attention was paid to the
formulation of the traffic dynamics, the dynamical phase transitions and the nonlinear
waves. Nagatani discussed the methods and results for the car-following models in detail
after explaining the traffic models and the micro–macro link. He focused on the dynami-
cal phase transitions and the nonlinear density waves from the point of view of statistical
physics and nonlinear waves. In addition, he described the linear stability theory in detail
to explain the jamming transitions. In 2003, K. Nagel, P. Wagner, and R. Woesler [9]
published an outstanding paper where they look at intuitive and formal arguments regard-
ing traffic jams, including their formation and their stability, providing also an overview
of empirical facts. They look at microscopic models for traffic, including coupled dif-
ferential equation models, cellular automata models, and coupled maps. These studies
help to understand the traffic flow dynamics and may contribute to implement strategies
to mitigate traffic congestion. Traffic flow also involves a self-driven many-particle sys-
tem far from equilibrium, where the nonlinear interactions among vehicles give rise to
exciting phenomena, such as boundary-induced phase transitions, spontaneous jams, and
metastability, hysteresis, and phase-separation [10–12]. Therefore, traffic flow studies
also contribute to investigating fundamental aspects of nonequilibrium systems of interest
in complexity sciences [13].
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Vehicle energy consumption and engine emissions are two critical aspects considered
in the transportation planning process of highways and road facilities. Transportation is
one significant contributor to human-made polluting emissions. Individually, the pollutant
emissions from cars are generally low. However, since the number of motor vehicles in
urban settlements is enormous, the combined emissions and energy consumption cannot
be disregarded. The pollutant emissions from vehicular traffic driven by fossil fuel com-
bustion depend on fuel chemical composition and consumption, so as the quality of the
combustion process. Therefore, we need the vehicle characteristics, traffic circumstances,
and road conditions to estimate the expected energy consumption and the associated ve-
hicular pollutant emissions.

According to Newtonian mechanics, the net force exerted on a vehicle in the direction
of motion is proportional to its acceleration once this force overcomes the friction forces,
such as the aerodynamic and rolling resistances. Tractive effort and resistance are the
principal forces opposing each other, which decide roadway vehicle performance. Trac-
tive force is exerted against the roadway surface, allowing the vehicle motion. Resistance
comprises all the forces that push back and impedes motion. Then,

FT (v,a) = ma+FR(v) (1)

Here, m and a are the vehicle’s mass and acceleration, and FR denotes the friction forces.
The main friction forces are the aerodynamic, rolling, and grade resistances. There

are simple models for estimating the first two resistances from the speed and some other
attributes, such as mass and frontal area of the vehicle and the road characteristics [14–
16]. The grade resistance is conceptually simple and depends on the slope of the road,
but its determination is complicated because of the road surface variability [17]. In this
work, we will not consider the influence of grade resistance on vehicle power and fuel
consumption.

Eq. 1 highlights the importance of knowing the vehicles’ spatial and temporal distri-
butions of velocity and acceleration for assessing the fuel (energy) consumption and the
associated pollutant emissions under the different traffic conditions and driving styles. It
also underlines the need of developing and applying theoretical and experimental strate-
gies to determine these distributions.

From the experimental standpoint, although there are vast amounts of empirical data
collected by loop detectors, video cameras, and floating cars, we are still not able to know
exactly how the traffic flow evolves even in simple scenarios, such as in a platoon of cars
following each other without overtaking and led by a car moving with constant velocity
[13]. Moreover, the empirical observations are site-specific and involve confounding fac-
tors, such as geometry, bottleneck strength, and traffic flow composition, which forestall
us from obtaining a comprehensive understanding of traffic flow behavior. Traffic flow
modeling could be an essential step in the design and control of transportation systems
and help to accurately and realistically predict traffic flow; however, no complete and
comprehensive model exists to capture the richness and complexity of real traffic.

In the last two decades, the cellular automata models for traffic flow (or traffic cellular-
automata (TCA)) emerged as an up-and-coming alternative to existing traffic flow models
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[4, 5, 9, 12, 18–22]. In contrast with existing models, which are either aggregate in their
treatment of traffic flow (macroscopic models) or detailed and limited in scope (micro-
scopic models), the TCA involve the individual vehicle interactions and dynamics and
relate them to macroscopic traffic flow attributes, such as throughput, travel time, and ve-
hicle speed. These models can encapsulate the complexity of real-world traffic behavior,
producing clear physical patterns similar to those we see in everyday life. These models
can more adequately capture the complexity of real traffic by allowing different vehicles
to possess different driving behaviors (acceleration/deceleration, lane change rules, and
reaction times).

Numerous works have reported many interesting results on energy consumption and
pollutant emission of vehicular traffic from different modelling standpoints, such as the
car-following and cellular automata traffic approaches. Toledo et al. [23] introduced a
microscopic traffic model, based on kinematic behaviour, which consists of a single ve-
hicle traveling through a sequence of traffic lights that turn on and off with a specific
frequency. They showed that the traffic variables such as travel time, velocity, and fuel
consumption follow critical scaling laws near a resonance, suggesting the existence of a
universal behaviour of the system in the vicinity of the resonant condition. Shi and Xue
[24], studied the relation between the energy consumption and the stability of vehicle
flow in several car-following traffic models including the cooperative driving with weight
factors and relative velocity. They showed that for more stable traffic flow, the less energy
consumption becomes less. These results can help to choose the optimal traffic model
with lower energy consumption to reduce air pollution. Zhang et al. [25] studied energy
dissipation rate in deterministic and non-deterministic NS models. They obtained the re-
lationships between the energy dissipation with the speed limit, the stochastic noise, the
boundary conditions and the “go and stop” traffic. Zhu [26] investigated the CO2 emission
rate in traffic flow from the analytical and numerical standpoints. They used an emission
model derived from the Bando’s optimal velocity model with a consideration of slope.
Simulations were conducted to examine the relationship between the CO2 emission rate
of vehicles and slope of road, traffic density, and road length. The results showed that
some original laws of CO2 emission in traffic flow with congestion were exhibited. Tang
et al. (2013) [27] used a car-following model to study the vehicle’s fuel consumption
with consideration of the traffic interruption probability under two traffic situations. The
numerical results show that the car-following model with consideration of traffic interrup-
tion probability can reduce vehicle’s fuel consumption in the studied traffic situations and
thus improve the vehicle’s fuel economy. Tang et al. (2014) [28] used empirical data to
calibrate the speed-headway function and proposed a car-following model to investigate
the effects of real-time road condition on each vehicle’s speed, acceleration, headway,
fuel consumption, and emissions of CO, HC and NOX under uniform flow. Their results
showed that real-time road condition produces oscillating phenomena and enhance each
vehicle’s fuel consumption and exhaust emissions. Xue et al. (2014) [29] proposed a
cellular automaton traffic model to investigate the energy dissipation in an on-ramp traffic
system. They considered the traffic behavior in on-ramp flow system and the variation of
energy dissipation in it. The influences of the injected probabilities and removed prob-
ability on energy dissipation were studied numericaly. The results showed the existence
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of a critical point for the injected probability and a platform for energy dissipation, and
indicated that the removed probability plays a relevant role in avoiding traffic jam and
reducing the energy dissipation and the vehicle emission. Tang et al. (2015) [30] used the
car-following model to explore the impacts of on-ramp on the vehicle’s fuel consumption
on the main road under uniform flow. Their numerical simulations showed that on-ramp
can enhance each vehicle’s fuel consumption on the main road and that the increments
are related to the traffic state of the main road and the inflow of the on-ramp. On another
work, Tang et al. (2017) [31], used their model to investigate the effects of a signal light
on the vehicle’s fuel consumption and HC, CO and NOx emissions on a road with open
boundary condition. They showed that the effects are related to the green split of the sig-
nal light and the vehicle’s time headway at the origin. Jin et al. [32] proposed a modified
car-following model that takes into account the influence of the average speed effect of ve-
hicles and driver’s memory on traffic flow basing on two velocity difference model. The
time-dependent Ginzburg–Landau equation and the modified Korteweg–de Vries equa-
tion were constructed to describe the traffic behaviour near the critical point. The evolu-
tion of traffic congestion and the corresponding energy consumption are discussed. Ma et
al. [33] proposed improvements to the car-following and the Virginia Tech microscopic
(VT-Micro [14]) models to study the impact of the acceleration with memory on stabi-
lization of traffic flow and vehicle’s fuel consumption. Numerical results showed that the
effect of acceleration with memory can gradually dissipate traffic congestion and reduce
energy consumption. Xue et al.(2020) [34] studied the energy consumption of vehicles
on one-way lanes under open boundary conditions with the Kerner-Klenov-Wolf three-
phase cellular automaton traffic model. Numerical simulations for energy consumption
on free flow, congested phase, synchronous flow, and maximum current indicate that the
injection and removal rates significantly impact energy consumption in the open boundary
traffic system. Qiao et al. [35] investigated the particulate matter emission of two cellular
automata traffic models with slow-to-start rule (VDR [10] and TT [36] models) by com-
bining an empirical particulate emission model (proposed by Int Panis et al. [37]) under
periodic boundary and open boundary conditions. Lakouari et al. [38] used the cellular
automaton NS model combined with the emission model [37] to simulate the CO2 emis-
sion at the roundabout. Binoua et al.[39] used the NS model to investigate the dependence
of the CO2 emission on the traffic lights. They considered the difference between the two
types of traffic lights control, the synchronized traffic lights and green wave controls.

In the simplest case of the single-lane traffic flow, the cellular automata models share
the following properties [19]: indistinguishable particles with unitary mass represent the
vehicles, they move in a 1D lattice gas obeying an exclusion principle (no more than one
particle in one lattice site), the particle velocity is a non-negative integer that cannot ex-
ceed a given limit, the dynamic rules prevent collisions and overtaking, and are applied
to all particles simultaneously, the number of particles is a conserved property. It is im-
portant to stress that the dynamical rules of the TCA are not microscopically reversible in
general (do not satisfy the principle of detailed balance [40]) and, therefore, define out-
of-equilibrium systems. No complete theory exists for TCA, except for some particular
models [19]. Therefore, in general, even with the simplest single-lane traffic flow models
proposed by Nagel and Schreckenberg (NS) [4, 18] and Fukui and Ishibashi (FI) [5, 12],



6 S. Carreón-Sierra · A. Salcido

one studies the TCA behavior through computer simulations.

In this paper, we used the TCA models to study the steady-state velocity and acceler-
ation distributions of single-lane traffic by computer simulations, and also for estimating
the associated energy consumption and CO2 emissions. We carried out the simulations
under periodic boundary conditions and determined the velocity and acceleration distri-
butions under (virtually) steady-state conditions for several values of the particle density
and stochastic delay (the main control parameters of the system). Then, we estimated
the energy consumption rate from the tractive force power, which we determined using
resistance force simple models reported in the literature [15,16,41]. To estimate the CO2
emissions of the simulated vehicular traffic, we used the velocity and acceleration dis-
tributions and an extension of an empirical model proposed by Int Panis et al.[37]. For
comparison purposes, we used the EPA emission factor [42] to estimate de CO2 emissions
of a petrol combustion engine.

Although one can find simple empirical models to estimate the vehicular pollutant
emission rate from emission factors depending on the vehicle velocity only [43, 44], the
more representative theoretical or empirical vehicular energy consumption and pollutant
emissions models require the velocity and acceleration distributions as the primary inputs.
This paper presented, up to our knowledge, the first estimations of steady-state velocity
and acceleration distributions for TCA models and their application to estimate their en-
ergy consumption and CO2 emissions.

2 Methods

Cellular automata (CA) constitute a class of spatially and temporally discrete dynamical
systems characterized by local interactions and synchronous evolution [45]. They are
prototypes for complex systems and processes comprised of many simple, homogeneous,
locally interacting components. Cellular automata can generate a rich spectrum of very
intricate behavior patterns based on relatively simple subjacent rules [45, 46], and they
appear to capture many essential features of complex self-organizing cooperative behavior
observed in natural systems [46].

The physical environment of a cellular automaton is a finite-dimensional lattice, where
each site has a finite number of discrete states. The states of the lattice sites define the
state of the complete system. It evolves in discrete time steps following a given transition
rule, which can be deterministic or probabilistic. Frequently, the transition rule has some
simplifying features: it is homogeneous (all sites evolve according to the same rule), but
one could also consider inhomogeneous cellular automata; it is spatially local (the transi-
tion rule depends only on the states of the sites in a given local neighborhood of the site
of interest); it is synchronic (all lattice sites are updated simultaneously); it is temporally
local (the rule depends only on the site states at very few previous time-steps).[45, 46]
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2.1 Traffic Cellular Automata

The application of CA to the traffic flow problems goes back to Cremer and Ludwig [47],
Nagel and Schreckenberg [4], and Fukui and Ishibashi [5]. The development of TCA
stimulated the research activity to understand and control traffic instabilities responsible
for stop-and-go traffic and congestion on freeways and urban streets [6, 48]. Nowadays,
cellular automata are popular frameworks for the microscopic simulation of traffic flow,
including multilane highways and complex urban traffic networks. However, no reports
exist about the steady-state distributions of velocity and acceleration in TCA and their
application to estimate energy consumption and pollutant emissions. This paper used
the NS and FI models, and a variant combining them, to study vehicular traffic velocity
and acceleration distributions under steady-state conditions and their associated energy
consumption and CO2 emission.

2.1.1 The Nagel and Schreckenberg Model

In the NS model [4, 18], space and time are discrete and hence, also the velocities. The
road is modeled by a 1D lattice with a number L (finite or infinite) of sites representing
vehicle positions. In general, we defined the time step δ t and the distance between ad-
jacent lattice sites δ s as a unit in CA models; however, for comparison with real traffic,
it is usual to define δ t as one second and δ s as the front-bumper-to-front-bumper aver-
age distance of cars under jamming conditions and taken equal to 7.5m [7]. Each site
of the lattice is empty or occupied by one vehicle that can be at rest (v = 0) or moving
left to the right along the lattice with an integer speed v = 1,2,3, . . . ,vmax. The follow-
ing rules define the time evolution of the system. These rules act on all vehicles (i.e.,
on all the non-empty lattice sites) simultaneously. If at time t, there is a vehicle at site c
(c = 1,2,3, ...,L), moving with velocity v(c, t), and with a number h(c, t) of empty sites
in front of the vehicle, then the velocity updating is performed in two steps. Step 1 (ac-
celeration/braking): v(c, t)→ u(c, t) = min{v(c, t)+1,h(c, t),vmax}; the vehicle speed is
at most increased by 1 at each time-step. Step 2 (randomization): with probability p,
v(c, t +1) = max{u(c, t)−1,0}, but with probability 1− p, v(c, t +1) = u(c, t). Finally,
the car moves from site c to site c+ v(c, t +1). Parameter p is called stochastic delay.

2.1.2 The Fukui-Ishibashi Model

In the FI model [5, 12], the vehicles can move by at most a number vmax of lattice sites in
one time-step if vehicles in front do not block them. In detail, if at time t, the number of
empty sites h in front of a car is larger than vmax, then this particle can move forward vmax
(or vmax−1) sites in the next time-step with probability 1− p (or p). If h < vmax at time t,
then the car can only move by h sites in the next time. Here, the probability p represents
the degree of stochastic delay. No driver would like to slow down when far away from the
vehicle ahead. In the high-density case, the stochastic delay represents the assurance of
the avoidance of crashes. The FI model differs from the NS model in that the increase in
speed may not be gradual and that stochastic delay only applies to the fast vehicles. The
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FI model can be considered as a NS model with aggressive driving style, since at each
step every car can accelerate to vmax (or vmax−1, depending on p).

2.1.3 The NS + FI Model

In 2007, Chuan-Ji Fu et al. [49] introduced a new TCA which consists of a modified
Nagel–Schreckenberg model with the Fukui–Ishibashi acceleration rule. In this model, it
is adopted the acceleration rule introduced by Fukui and Ishibashi, but modified for the
stochastic delay is also applied to slow vehicles. If at time t, there is a vehicle at site
c (c = 1,2,3, ...,L), moving with velocity v(c, t) with a number h(c, t) of empty sites in
front of it, then the velocity updating is performed as follows

v(c, t +1) =


0 if h(c, t) = 0
h(c, t)−1 with probability p, if 0 < h(c, t)< vmax
h(c, t) with probability 1− p, if 0 < h(c, t)< vmax
vmax−1 with probability p, if h(c, t)≥ vmax
vmax with probability 1− p, if h(c, t)≥ vmax

2.2 Velocity and Acceleration Distributions

In general, we can describe the state of a 1D TCA with the number of lattice cells (L) and
the numbers Ni of the vehicles that are moving with each one of the allowed velocities
vi = i (i = 0,1,2, . . . ,vmax) [19]. Conveniently, we can use intensive properties, such as
the partial densities defined as

ni =
Ni

L
(2)

The numbers ni define the velocity distribution of the selected traffic model; they specify
the number of vehicles per site that move with velocity vi.

The vehicular density n is equal to the sum of all the partial densities ni

n =
vmax

∑
i=0

ni (3)

and the number of cars in the lattice is N = nL.
The traffic flow (or density of momentum) q and the density of kinetic energy ε are

given by

q = nv̄ =
vmax

∑
i=0

vini (4)

ε =
vmax

∑
i=0

εini (5)

where εi = v2
i /2 is the kinetic energy of a car moving with speed vi. We observe that

v̄ = q/n is the average speed of the traffic flow. In general, the partial densities ni will be
functions of the density n and the stochastic delay p.
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Depending on the model dynamics, each car can increase or decrease its velocity be-
tween 0 and vmax. If at time t, in a cell c is located a car moving with a velocity u(c, t),
the rules of the model will change this velocity to u(c, t +1),

u(c, t +1) = D(u(c, t),h(c, t), p,vmax) (6)

Here, D denotes the set of rules that define the model dynamics. These rules, in general,
are defined in terms of the velocity u(c, t) of the car at the cell of interest at time t, the
distance h(c, t) (number of free cells) to the next car ahead at time t, a random braking
probability (or stochastic delay) p, and the speed limit vmax.

The acceleration a(c, t) of the car is the velocity change per unit time given by

a(c, t) = u(c, t +1)−u(c, t) = D(u(c, t),h(c, t), p,vmax)−u(c, t) (7)

In principle, the acceleration a(c, t) can assume values a j = j with

j =−vmax, . . . ,−1,0,1, . . . ,vmax, (8)

although it will depend on the value of u(c, t). We will describe the acceleration distribu-
tion in terms of a (vmax +1)× (2vmax +1) matrix A.The element Ai j gives the fraction of
cars in the system with velocity vi and acceleration a j. Under steady-state conditions, the
functions Ai j will only depend on the particle density and stochastic delay.

2.3 Estimation of Energy Consumption

The calorific value of a fuel is the amount of energy (heat) released during the combustion
of the unit of mass of fuel (expressed as kcal/kg or Joule/kg). On average, the calorific
value for gasoline is 45MJ/kg. Then, if Q and Q0 are the instantaneous and idle fuel con-
sumption rates of a fossil fuel combustion vehicle, the difference Q−Q0 is proportional
to the instantaneous vehicle power, P = vFT (v,a),

Q(v,a)−Q0 = kP(v,a) = kvFT (v,a) (9)

where k is a constant, and v and a are the vehicle’s speed and acceleration. The value
of k depends on the fuel’s chemical composition and thermodynamic properties, and Q0
depends on the engine characteristics and the quality of the internal combustion process.

Using Eq. 1, we can write

Q(v,a)−Q0 = kv
[
ma+FR(v)

]
(10)

For TCA with identical model vehicles, the vehicle power,

P(v,a) =
Q(v,a)−Q0

k
= v
[
ma+FR(v)

]
(11)

constitutes an appropriate measure of the energy consumption rate.
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Eq. 11 gives the required power as a function of velocity and acceleration in all driving
situations where acceleration has a non-negative value. For negative acceleration, corre-
sponding to braking or downhill situations, the fuel consumption depends on the motor
management and the driving style. In this work, we assume flat terrain highways (no
downhill situations), and the negative accelerations will be associated with braking with-
out using the motor brake. Additionally, we will not consider hybrid cars, where kinetic
energy charges the batteries. Moreover, Eq. 11 does not considers the energy consump-
tion by the engine of a stopped vehicle. Under engine idle conditions, energy is consumed
only if the car is in motion.

To estimate the energy consumption of a traffic cellular-automata, we propose the fol-
lowing extension of Eq. 11 for any lattice cell c and time t,

P(c, t) =
vmax

∑
i=0

{
FR(vi)vini(c, t)+

vmax

∑
j=−vmax

(
mvia j

)
Ai j(c, t)

}
(12)

2.4 The Resistance Forces

There are simple models for the aerodynamic and rolling resistance forces. Following
[15, 16, 41, 50], we will use the formulas described below.

2.4.1 Aerodynamic Resistance

The turbulent airflow around the vehicle body produces aerodynamic resistance. This
turbulence depends on the vehicle shape and the friction of air passing over the vehi-
cle surface. A small contribution to this resistance comes from airflow through vehicle
components, such as interior ventilation. A simple model to estimate the aerodynamic
resistance [50] is:

RA =
ρACDv2

2
(13)

Here, ρ is the air mass density, A is the vehicle’s frontal area, CD is the drag coefficient,
and v is the vehicle’s speed. The frontal area and drag coefficient are generally unique to
each vehicle or type of vehicle.

2.4.2 Rolling Resistance

The interaction of the vehicle tires with the roadway surface produces the rolling resis-
tance. The leading causes of rolling resistance are the tire rigidity and the roadway sur-
face, the tire pressure and temperature, the vehicular operating speed, and vehicle weight
(mg). The value of rolling resistance is given by the simplified formula [50],

RR = (µ0 +µ1v)mg (14)
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Parameter Symbol Value

Vehicle mass m 1600kg
Friction coefficient µ0 0.015
Friction coefficient µ1 0.0003s/m
Cross-sectional-area A 2.03m2

Air drag coefficient CD 0.32

Table 1 Car data for typical passenger cars [50].

2.4.3 Energy Consumption Rate in TCA

Using the expresions for the aerodynamic and rolling resistances, Eq. 12 becomes to

P(c, t) =
vmax

∑
i=0

{[
ρACDv2

i
2

+(µ0 +µ1vi)mg
]

vini(c, t)+
vmax

∑
j=−vmax

(mvia j)Ai j(c, t)

}
(15)

This equation describes the energy consumption rate per site of the vehicles moving with
velocities and accelerations distributed according to ni and Ai j. Under steady-state condi-
tions, the distributions of velocity and acceleration, ni and Ai j, depend only on the particle
density n and the stochastic delay p, and Eq. 15 gives the vehicular power per site of the
system P(n, p). This equation involves some parameters specific for the vehicle type. In
Tab. 1, we presented some typical values for passenger cars as reported in [50].

Although generally defined as a unit, the distance among adjacent cells in the lattice
is assumed to be the average front-bumper-to-front-bumper distance of adjacent vehicles
under conditions of strongly jammed traffic and set for real traffic simulations to 7.5m
[7]. If the time step is set equal to one second, the vehicle velocity will change in steps
of 27km/h. Therefore, when comparing with actual traffic data, the interpretations of the
model velocities are

v0 = 0,v1 = 27,v2 = 54,v3 = 81,v4 = 108,v5 = 135km/h (16)

2.5 Estimation of CO2 Vehicular Emissions

We considered the carbon dioxide emission because of its adverse effects on the global
heating phenomenon and its direct link with fuel consumption (according to the US-EPA
emission factors [42], 2.35kg of CO2 are released to the atmosphere each liter of fuel
combusted, on average). We estimated the CO2 emissions for TCA models using an
empirical model proposed in 2006 by Luc Int Panis, Steven Broekx, and Ronghui Liu
[37]. This emission model (hereafter referred to as PBL model) is based on empirical
measurements that relate vehicle emissions to engine type and instantaneous speed and
acceleration.

Because of its simplicity, many researchers have adopted the PBL model to study ve-
hicular emissions. Moreover, the PBL model can predict the urban traffic emission of
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Engine Type f0 f1 f2 f3 f4 f5

Gasoline 0.553 0.161 −0.00289 0.266 0.511 0.183
Diesel 0.324 0.0859 0.00496 −0.0586 0.448 0.230
LP gas 0.600 0.219 −0.00774 0.357 0.514 0.170

Table 2 Constants for the CO2 emission function for urban traffic [37].

CO2 within the 95% confidence interval, using only the vehicles acceleration and speed
as predictors [37, 38, 51]. Nyhan et al. [51] used data routinely captured by existing
transportation networks and vehicle fleets to predict vehicular emissions in high spatial
resolution. They implemented a microscopic emissions model based on the PBL model
to predict CO2, NOx, VOC, and PM emissions throughout the study domain. Pan et al.
[52] combined the classical NS traffic model and the empirical emission function of the
PBL model to investigate the effects of traffic congestion on the atmosphere due to the
emitted particulate matter from on-the-road vehicles, and also the impact on the fuel rate
and dissipation. Astarita et al. [53] estimated the energy and air quality impacts of a
single intersection signal regulation by evaluating fuel consumption and pollutant emis-
sions, demonstrating that significant improvements in air quality are possible by introduc-
ing floating car data regulated traffic signals. Madani and Moussa [54] adopted cellular
automaton to simulate fuel consumption and engine pollutant using a simple emission
model that resembles the emission factor approach. Wang et al. [55] studied pollutant
emissions of mixed traffic flow with a cellular automaton traffic model based on the NS
model, coupled with an empirical emission procedure derived from the PBL model. In
the PBL model, using nonlinear multiple regression, a general function for all pollutant
emissions was derived for each vehicle type with instantaneous speed and acceleration as
parameters. The emission rate of a given vehicle moving with speed v(t) and acceleration
a(t) at time t is estimated as

G(v,a) = f0 + f1v(t)+ f2v(t)2 + f3a(t)+ f4a(t)2 + f5v(t)a(t) (17)

Here, fk (k = 0,1, . . .5) are constants specific for each pollutant and type of vehicle en-
gine. Int Panis et al. [37] reported these constants for CO2, NOx, COV, and PM for
gasoline, diesel, and LP gas engines. Tab. 2 presents the constants for CO2 emissions
and gasoline, diesel, and LP gas engines. The emission rate unit is g/s if the speed and
acceleration are expressed in m/s and m/s2, respectively.

2.5.1 CO2 Emission Rates in TCA

To estimate the CO2 emission rate per site of a traffic cellular-automata, we propose the
following extension of Eq. 17 for any lattice cell c and time t,

G(c, t) = f0n0 +
vmax

∑
i=0

{[
f1vi + f2v2

i
]

ni +
vmax

∑
j=−vmax

[
( f3a j + f4a2

j)+ f5via j
]

Ai j

}
(18)
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where ni = ni(c, t) and Ai j = Ai j(c, t), and the constants f0, . . . , f5 as given in Tab. 2.
Under steady-state conditions, the distributions of velocity and acceleration, ni and

Ai j, depend only on the particle density n and the stochastic delay p of the system. For
any couple (n, p), ni(n, p) gives the fraction of vehicles moving in the system with the
velocity vi, and Ai j(n, p) gives the fraction of vehicles in the system with velocity vi and
acceleration a j. This case, Eq. 18 gives the CO2 emission rate per site of a TCA as
G(n, p).

Eq. 18 gives the CO2 emission rate per lattice-site as a function of velocity and accel-
eration distributions in all driving situations where acceleration has a non-negative value.
For negative acceleration, corresponding to braking or downhill situations, the fuel con-
sumption and emissions depend on motor management style. We will assume no downhill
situations, and the negative accelerations will be associated with mechanical braking (i.e.,
without using the engine brake). Eq. 18 comprises four contributions, which, for future
reference, we will denote as

C(0) = f0n0 (19)

C(v) =
vmax

∑
i=0

(
f1vi + f2v2

i
)

ni (20)

C(a) =
vmax

∑
i=0

vmax

∑
j=−vmax

(
f3a j + f4a2

j
)

Ai j (21)

C(va) =
vmax

∑
i=0

vmax

∑
j=−vmax

f5via jAi j (22)

The term C(0) is the contribution of the vehicles stopped to the emission rate, C(v) gives
the contribution of the vehicles moving with the velocities v1,v2, . . . vmax, C(a) is the
contribution of the vehicles moving with velocity vi and acceleration a j, and C(va) is a
nonlinear contribution associated with a coupling of velocity and acceleration. Tab. 2
shows that the PBL model privileges the C(a) and C(va) contributions by giving larger
values to f3 and f4 coefficients than to the coefficients of the other contributions.

2.5.2 Computer Simulation Approach

In general, there are no exact solutions for the traffic cellular automata models we have
considered here, except for the cases vmax = 1 and the low-density behavior of the FI
model [19]. Therefore, we used computer simulations to carry out the present study. We
developed simple ad hoc code implementations of the NS, FI, and NS+FI traffic cellular
automata. One could fix the main model parameters in the programs, such as the size of
the lattice, particle density, maximum velocity, randomization probability or stochastic
delay, and the maximum number of time steps. We made the computer simulations using
an L = 4000 sites lattice with periodic boundary conditions. We considered the traffic
models with the speed limit vmax = 5. With each traffic model, we performed 10000 time-
step simulations for particle densities n ranging from 0 to 1 with steps δn = 0.05 and
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stochastic delays p ranging from 0 to 1 with steps δ p = 0.2. We carried out computer
simulations for several spans Tmax to verify that the system reached a steady-state condi-
tion. We observed that for Tmax > 5000, each model was virtually under a steady-state
condition. In this work, we selected Tmax = 10000 to calculate the densities ni and the
acceleration elements Ai j (i = 0,1, . . . ,5 and j =−5, ...−1,0,1, . . . ,5). We repeated 100
times each simulation, and we calculated the averages of ni and Ai j over the number of
simulations for each pair (n, p).

3 Results and Discussion

This section presents the computer simulation results obtained for the steady-state be-
havior of the NS, FI, and NS+FI traffic cellular automata. Specifically, the velocity and
acceleration distributions, the energy consumption, and the CO2 emission rates.

3.1 Verification of the Steady-State Condition

We carried out computer simulations for several spans to verify that the system reached a
steady-state condition:

Tmax = 10,50,100,500,1000,5000,7000,10000

Fig. 1 shows the plots of the partial densities n0,n1, . . . ,n5 of the NS velocity distri-
bution for the case vmax = 5 as functions of the particle density for the stochastic delay
p = 0.6. These plots suggest the system can be considered virtually under a steady-state
condition for Tmax > 5000. We selected Tmax = 10000 for this work.

3.2 Steady-State Velocity and Acceleration Distributions

In this section, we present the velocity and accelerations distributions of the NS, FI and
NS+FI traffic cellular automata under virtual steady-state conditions obtained by com-
puter simulations with a speed limit vmax = 5. These distributions allow to determine the
properties of the TCA models, such as the fundamental diagrams (Sec. 3.3), energy con-
sumptions, and CO2 emissions to the atmosphere, which we presented in the following
sections.

3.2.1 NS Model Velocity Distribution

Fig. 2 shows the partial densities n0,n1, . . . ,n5 of the NS steady-state velocity distribution
for vmax = 5 as functions of the particle density n and stochastic delay p.

The density ni gives the number of model vehicles moving with the velocity vi = i, with
i = 0,1, . . . ,5. Here, for any stochastic delay, we observe the number of vehicles at rest n0
growing from 0 up to 1 as n increases from 0 to 1. The value of p determines the growth
rate of n0 with n, which increases as p increases, with the limit
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(a) (b) (c)

(d) (e) (f)

Figure 1 Verification of the steady-state condition. The plots show the partial densities n0,n1, . . . ,n5 of
the NS model velocity distribution for the case vmax = 5 as functions of the particle density for
p = 0.6, and several simulation spans. For Tmax > 5000 the system is virtually under a steady-
state condition. (a) n0, (b) n1, (c) n2, (d) n3, (e) n4, and (f) n5.
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(a) (b) (c)

(d) (e) (f)

Figure 2 Steady-state velocity distributions of the NS traffic cellular automata as functions of the particle
density and stochastic delay. (a) n0, (b) n1, (c) n2, (d) n3, (e) n4, and (f) n5.
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lim
p→1

(
∂n0

∂n

)
= 1 (23)

Equivalently,
lim
p→1

n0(n, p) = n (24)

The other partial densities n1, . . . ,n5 have the limits

lim
n→0

ni(n, p) = lim
n→1

ni(n, p) = 0 (25)

for any p. We also observe that n1,n2,n3, and n5 have peaks with decreasing height as p
increases. Otherwise, the partial density n4 has a peak that grows with p for p < 0.5 and
shrinks as p increases for p > 0.5, approximately.

Under steady-state conditions, the vehicles most abundant are those with the velocities
v0 = 0 and v1 = 1, in that order, although with a substantial difference among them. While
n0 grows monotonically from 0 to 1, the partial density n1 grows from zero to a value less
than 0.2 and then decreases to zero again. On the other hand, the vehicles less abundant
were those with velocity v4 with partial density n4 < 0.035.

With the exceptions of n0 and n4, all the partial densities decrease as the stochastic delay
increases. The partial density n0 (the fraction of vehicles with v0 = 0) increases with p
since this parameter controls the frequency of the vehicles braking. The partial density n4
has a dependence on the stochastic delay very different than the others. Initially, n4 grows
as p increases, but for values p > 0.5, n4 decreases as p increases. This behavior is due to
the fact that the speed limit is vmax = 5. The particles with velocity v = 5 only can remain
with this velocity or decelerate to v = 4. Moreover, as we will see later (Sec. 3.2.4), for
small p the particles with velocity v = 3, can accelerate more frequently than decelerate.

3.2.2 FI Model Velocity Distribution

Fig. 3 shows plots of the partial densities n0,n1, . . . ,n5 of the steady-state velocity dis-
tribution of model FI with vmax = 5, as functions of the particle density n and stochastic
delay p. The density ni gives the number of model vehicles moving with the velocity
vi = i, with i = 0,1, . . . ,5.

Fig. 3 shows that all the vehicles are moving with one of the two largest velocities, v4 or
v5, in the low-density modality (0 < n < 1

vmax
). In this interval, all the partial densities are

equal to zero, excepting v4 and v5. A theoretical deduction of this behavior was reported
in [19]. Moreover, one detects the effect of the stochastic delay only in the fast particles.
For particle densities n > 1

vmax
= 0.2, the partial densities revealed no dependence on the

stochastics delay. The FI model differs from the NS model in that the increase in speed
may not be gradual and that stochastic delay only applies to the fast particles.

3.2.3 NS+FI Model Velocity Distribution

Fig. 4 shows the partial densities n0,n1, . . . ,n5 of the NS+FI steady-state velocity distribu-
tion for the case vmax = 5 as functions of the vehicular density and stochastic delay. With
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(a) (b) (c)

(d) (e) (f)

Figure 3 Steady-state velocity distributions of the FI traffic cellular automata as functions of the particle
density and stochastic delay. (a) n0, (b) n1, (c) n2, (d) n3, (e) n4, and (f) n5.
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(a) (b) (c)

(d) (e) (f)

Figure 4 Steady-state velocity distributions of the NS+FI traffic cellular automata as functions of the
particle density and stochastic delay. (a) n0, (b) n1, (c) n2, (d) n3, (e) n4, and (f) n5.

exception of n0, all the partial densities in the NS+FI model driving style, under steady-
state conditions, are concave functions of n with the same limits as in the NS model given
by Eq. 25. In this model, however, the partial densities n0,n3, and n4 increase with p,
but n1,n2, and n5 decrease as p increases. The most abundant are the vehicles with the
velocities v0 = 0 and v1 = 1. On the other hand, the less abundant were the vehicles
with velocities v2 and v3, whose partial densities were n2 < 0.07 and n3 < 0.06. Fig. 4
also shows that under low density conditions (n < 1/vmax = 0.2), almost all vehicles are
moving with the larger speeds, v4 and v5, as it occurs with the FI driving style.

3.2.4 NS Model Acceleration Distribution

The acceleration distribution matrix A has (vmax+1)×(2vmax+1) elements (66 elements
for models with vmax = 5). The element Ai j gives the number of vehicles moving with the
velocity vi = i and acceleration a j = j. In the case of the NS model, the values with j > 1
are not possible because of the gradual acceleration style of this TCA (as underlined in
Sec. 2.1.1, the velocity of one car can increase only by one each cycle of the updating
process). Moreover, all the negative accelerations (braking) are possible from −i to −1
for velocities vi > v0. Therefore, the only elements Ai j > 0 are those with i = 0,1, . . . ,5
and j =−i, . . . ,0,1. These are 26 elements for the NS model with vmax = 5.
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Fig. 5 shows the elements Ai j > 0 of the NS steady-state acceleration distribution for
the case vmax = 5 for several values of the vehicular density n and stochastic delays p =
0.2,0.6,0.8. In the Fig. 5, Fig. 6, and Fig. 7, we denoted the fractions Ai j as A[i, j].

In Fig. 5, we observe the reason why n4 grows as p increases while p < 0.5, but de-
creases for values p > 0.5. The acceleration elements A50 and A5−1 of the vehicles with
velocity v = 5 indicate that these vehicles only can remain with this velocity or deceler-
ate to v = 4 (decelerations to smaller velocities are practically negligible). Moreover, the
elements A3 j of the vehicles with velocity v = 3 show that these vehicles accelerate more
frequently than decelerate.

3.2.5 FI Model Acceleration Distribution

As in the NS model, the FI model transition rules limited the number of elements of the
acceleration distribution matrix that can be larger than zero in the case vmax = 5. In this
case we obtained 28 elements Ai j > 0. Fig. 6 shows these elements as functions of the
particle density n for p = 0.2,0.6,0.8. In Fig. 6, we observed that for particle densities
n > 1

vmax
= 0.2, all the fractions Ai j do not depend on the stochastic delay. For low-

densities (0 < n < 0.2), however, the only elements Ai j > 0 are A40, A41, A50, and A5−1,
with values dependent on the stochastic delay.

3.2.6 NS+FI Model Acceleration Distribution

In this case we obtained 30 elements Ai j > 0, which correspond to j =−i, . . . ,0, . . . ,5− i.
Fig. 7 shows the plots of these elements as functions of density n for p = 0.2,0.6,0.8. In
Fig. 7, we observed that all the fractions Ai j present a clear dependence on the stochastic
delay. For low-densities (0 < n < 0.2), the elements A0 j, A1 j, and A2 j are negligibly small
or small for any p. Otherwise, A40, A41, A50, and A5−1 have considerable values within
the same density interval.

3.3 Steady-State Fundamental Diagrams

From Eq. 4, we determined the mean vehicular flow per site q for the NS, FI, and NS+FI
models. Fig. 8(a,b,c) present the fundamental diagrams (q as a function of vehicular
density n) and Fig. 8(d,e,f) show the mean velocities, v̄ = q/n, under (virtually) steady-
state conditions for several stochastic delay values.

For the NS model, the vehicular flows qNS, qFI , and qNSFI , are increasing then de-
creasing functions of the vehicular density, with their maximum values located in the
low-density region, n ≤ 1

vmax
. The peak of the vehicular flow qNS decreases with the

stochastic delay. For p = 0, the peak value is qNS = 0.8, at n = 1
vmax

= 0.2. In the case of
the FI and NS+FI driving styles, the vehicular flows qFI and qNSFI are very slight decreas-
ing functions of the stochastic delay for low densities n < 1

vmax
= 0.2. For high densities

(n > 0.2), the flow qFI only depends on n, and is given by qFI = 1−n. In the case of the
NS+FI model, qNSFI is a decreasing function with both, n and p. The driving style with
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Figure 5 Steady-state acceleration distribution for the NS model with vmax = 5. (a) A0 j, p = 0.2; (b) A0 j,
p = 0.6; (c) A0 j, p = 0.8; (d) A1 j, p = 0.2; (e) A1 j, p = 0.6; (f) A1 j, p = 0.8; (g) A2 j, p = 0.2;
(h) A2 j, p = 0.6; (i) A2 j, p = 0.8; (j) A3 j, p = 0.2; (k) A3 j, p = 0.6; (l) A3 j, p = 0.8; (m) A4 j,
p = 0.2; (n) A4 j, p = 0.6; (o) A4 j, p = 0.8; (p) A5 j, p = 0.2; (q) A5 j, p = 0.6; (r) A5 j, p = 0.8.
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Figure 6 Steady-state acceleration distribution for the FI model with vmax = 5. (a) A0 j, p = 0.2; (b) A0 j,
p = 0.6; (c) A0 j, p = 0.8; (d) A1 j, p = 0.2; (e) A1 j, p = 0.6; (f) A1 j, p = 0.8; (g) A2 j, p = 0.2;
(h) A2 j, p = 0.6; (i) A2 j, p = 0.8; (j) A3 j, p = 0.2; (k) A3 j, p = 0.6; (l) A3 j, p = 0.8; (m) A4 j,
p = 0.2; (n) A4 j, p = 0.6; (o) A4 j, p = 0.8; (p) A5 j, p = 0.2; (q) A5 j, p = 0.6; (r) A5 j, p = 0.8.
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Figure 7 Steady-state acceleration distribution for the NS+FI model with vmax = 5. (a) A0 j, p = 0.2; (b)
A0 j, p = 0.6; (c) A0 j, p = 0.8; (d) A1 j, p = 0.2; (e) A1 j, p = 0.6; (f) A1 j, p = 0.8; (g) A2 j,
p = 0.2; (h) A2 j, p = 0.6; (i) A2 j, p = 0.8; (j) A3 j, p = 0.2; (k) A3 j, p = 0.6; (l) A3 j, p = 0.8;
(m) A4 j, p = 0.2; (n) A4 j, p = 0.6; (o) A4 j, p = 0.8; (p) A5 j, p = 0.2; (q) A5 j, p = 0.6; (r) A5 j,
p = 0.8.
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(d) (e) (f)

Figure 8 Fundamental diagrams for the traffic cellular automata under (virtually) steady-state conditions.
(a) and (d) NS model, (b) and (e) FI model, (c) and (f) NS+FI model.
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(a) (b) (c)

Figure 9 Steady-state vehicular power per site in traffic cellular automata. (a) NS model, (b) FI model,
(c) NS+FI model.

the larger vehicular flow was that of the FI model, followed by the flows of the NS+FI
and NS models.

From the vehicular flows qNS(n, p), qFI(n, p), and qNSFI(n, p), we calculated the mean
velocities v̄ using Eq. 4. Fig. 8(d,e,f) show the plots of the mean velocities v̄NS(n, p),
v̄FI(n, p), and v̄NSFI(n, p), for p = 0.2,0.4,0.6,0.8. Here, we observe, for the FI and
NS+FI models, that the mean velocities remain almost constant for n < 0.2, and decrease
as n increases for n > 0.2. For p = 0.2, the average values of v̄NS, v̄FI , and v̄NSFI were
1.43, 1.87, and 1.68 sites per time step, which, according to Eq. 16, correspond to 38.61,
50.49, and 45.36km/h for the NS, FI and NS+FI models.

3.4 Steady-State Energy Consumption Rate in TCA

For the TCA models with vmax = 5 that we have considered, Fig. 9 presents the steady-
state vehicular power (or energy consumption per unit time) per site, P(n, p), for several
values of n and p = 0.2,0.4,0.6,0.8. We calculated P(n, p) using Eq. 15, the steady-
state velocity and acceleration distributions, ni(n, p) and Ai j(n, p) previously described in
Sec. 3.2, and the vehicle characteristics given in Tab. 1. The plots of Fig. 9 do not include
a contribution due to the basic energy consumption by a vehicle stopped with the engine
running or electric consumers such as lights or air conditioning.

In Fig. 9(a) and Fig. 9(c), we observe that the vehicular power per site in the NS and
NS+FI models reflects a strong dependence on the stochastic delay, where PNS(n, p) and
PNSFI(n, p) decrease as p increases. This behavior is partially a consequence of the fact
that the larger values of ni correspond, in general, to the smaller values of p, except for
the vehicles at rest (Fig. 2).

In Fig. 9(b), otherwise, we observe that the vehicular power per site in the FI model,
PFI(n, p), only depends on the stochastical delay for densities n < 1

vmax
. In the low-density

behavior (n < 0.2), this model has all the vehicles moving with the highest velocities
v4 and v5, and therefore the vehicles with smaller velocities, v0,v1,v2 and v3, do not
contribute to the vehicular power per site of the system (see Sec. 3.2.2, Fig. 3). When
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(a) (b)

Figure 10 Energy (a) and fuel (b) consumption per kilometer with the NS, FI, and NS+FI driving styles
for the stochastic delay p = 0.2.

density is n = 1
vmax

= 0.2, the cars are distributed uniformly in the lattice (one car every
fifth cell), each one moving with velocity v = 4. In this case, a synchronized traffic flow
condition prevails with no acceleration, and the energy consumption sustains the motion
against aerodynamic and rolling dissipation. For n > 0.2, all the cars are at rest or moving
with the velocities v1,v2,v3, and v4 (there are no vehicles with velocity v5), being the cars
with velocities v1 and v4 those with the more substantial contributions to vehicular power.

The plots in Fig. 9 reveal that the energy consumption rate per site in the NS model is
considerably smaller than in the FI and NS+FI models. For p = 0.2, PNS(n, p) reaches its
maximum of 18.35kW for n close to 0.35. In the FI model we found that PFI(n, p) reaches
its maximum of 45.35kW for n close to 0.4, independently of p, and in the NS+FI model,
for p = 0.2, PNSFI(n, p) reaches its maximum of 61.10kW for n = 0.3. On average, for
p = 0.2, the energy consumption rates per site were 11.2, 21.8, and 26.9kW for the NS,
FI, and NS+FI models, respectively.

In Fig. 10, we presented the energy and fuel (petrol) consumption per kilometer for the
NS, FI, and NS+FI models, for p= 0.2. From Fig. 10(a,b), for the energy consumption we
obtained the average values of 1.88, 2.60, and 2.76MJ/km, and for the fuel consumption
we obtained the average values of 0.08, 0.12, and 0.13L/km, for the NS, FI, and NS+FI
models It is interesting to underline that for petrol, typical values of density and caloric
value are 750kg/m3 and 45MJ/Kg, which, for a highway fuel consumption of 10km/L,
give an energy consumption of 3.37MJ/km.

3.5 Steady-State CO2 Emission Rate in TCA

Fig. 11 shows the steady-state CO2 emission rate per lattice site, G(n, p), for the NS,
FI, and NS+FI traffic models with vmax = 5. The CO2 emission rates were calculated
using Eq. 18, the steady-state velocity and acceleration distributions ni(n, p) and Ai j(n, p)
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Figure 11 Steady-state CO2 emission rate per site in traffic cellular automata. (a) NS model, (b) FI model,
(c) NS+FI model.

(a) (b) (c)

Figure 12 Contributions of the vehicles velocity and acceleration to the steady-state CO2 emission rate
per site (g/s) in traffic cellular automata. (a) NS model, (b) FI model, (c) NS+FI model.

described in Sec. 3.2, and the emission constants for a gasoline engine given in Tab. 2.
With the NS and NS+FI driving style models, the CO2 emission rates per site reflect the
effect of the stochastic delay, decreasing as p increases. In the case of the FI model, we
only detected an effect of the stochastic delay for low vehicular densities n < 0.2, but no
dependence was observed for larger densities.

The individual contributions of vehicles velocity and acceleration to the CO2 emission
rate per site are shown in Fig. 12 (expressed in g/s) for the NS, FI, and NS+FI traffic
models. In this figure, we observe that the acceleration contributions to the emission rate
per site are close to two orders of magnitude larger than the velocity contributions.

In magnitud, we observed that the larger emissions were produced by the NS+FI driving
style model, and the smaller by the NS model. For p = 0.2, we obtained the following
peak values of the emissions rates per site, GNS = 6.6g/s for n = 0.5, GFI = 26.6g/s for
n = 0.45, and GNSFI = 31.9g/s for n = 0.33. On average, for p = 0.2, the CO2 emission
rates per site were 4.42, 12.66, and 14.51g/s for the NS, FI and NS+FI models.

In Fig. 13, we presented the plots of the CO2 emission per kilometer as a function of
density, for the NS, FI and NS+FI models with p = 0.2. Here, the average values were
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Figure 13 CO2 emission per kilometer with the NS, FI, and NS+FI driving styles for the stochastic delay
p = 0.2.

1.37, 1.93, and 2.14kgCO2/km. Now, we have to observe that, according to the EPA
emission factor of 2.35kgCO2/l [42], the CO2 emission of a car with a fuel consumption
of 10km/l is 0.235kgCO2/km. It must be observed, however, that the averaging here has
considered the full density interval 0 < n < 1. For vmax = 5, densities n > 1/vmax = 0.2
do not correspond already to free flow conditions. Then, as it is observed in Fig. 13,
in the limit n→ 1, the strong jamming condition produces very large CO2 emission per
kilometer since v̄→ 0. In fact, if we only take in to account densities n < 0.5, the average
values of CO2 emission are 0.158, 0.460, and 0.562kgCO2/km.

4 Conclusions

This paper studied the energy consumption and CO2 emissions of vehicular traffic from
the TCA standpoint. The transition rules of the traffic models proposed by Nagel and
Schreckenberg [4], Fukui and Ishibashi [5], and Fu et al. [49] were considered as rep-
resentatives of different driving styles, then computer simulations were carried out with
these TCA to evaluate their effect on their energy and fuel consumption and CO2 emis-
sions under steady-state conditions for different values of stochastic delay. Driving style
generally refers to the way a driver prefers to or habitually drives the car. The driving
style can be classified into three typical types [56]: aggressive type, moderate type, and
cautious type. The aggressive driving style is usually associated with high speed and hard
acceleration, as it occurrs in the FI model. In contrast, a cautious driver would drive
more carefully, avoiding high speed, and accelerating gradually. Cautious driving style
is usually associated with longer space headway and longer deceleration. We considered
the NS model as a representative of a cautious style. The moderate driver drives with
relative steady motions that are neither too cautious nor too aggressive, as it is the case
in the NS+FI model. The energy consumption was estimated with an extension of the
Newton formula for the power developed by the tractive force required to accelerate the
vehicle against the aerodynamic and rolling resistance. The CO2 emissions were esti-
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mated extending the Int Panis et al. empirical model [37] to TCA. Both methods require
the steady-state distributions of velocity and acceleration, and we obtained them from
computer simulations. From a methodological standpoint, these extended methods con-
stitute original contributions for estimating energy consumption and pollutant emissions
of vehicular traffic using TCA simulations. Some quantitative results: For the NS, FI, and
NS+FI models with an stochastic delay p= 0.2, we obtained average values of 1.88, 2.60,
and 2.76MJ/km of energy consumption, average values of 0.08, 0.12, and 0.13L/km of
fuel consumption, and average values (over the density interval of 0 < n < 0.5) of 0.158,
0.460, and 0.562kgCO2/km for the CO2 emissions. For petrol combustion engines, it
is interesting to underline that typical values of density and caloric value are 750kg/m3

and 45MJ/Kg, which, for a highway fuel consumption of 10km/L, give an energy con-
sumption of 3.37MJ/km. Also, we underline that, according to the EPA emission factor
of 2.35kgCO2/l [42], the CO2 emission of a car with a fuel consumption of 10km/l is
0.235kgCO2/km. This work shows that the traffic cellular automata can help evaluate
energy consumption scenarios and vehicular emissions under different traffic flow and
driving style conditions in order to optimize the traffic flow and mitigate its adverse im-
pacts on air quality and climate.

A final comment. Traffic cellular automata, so as the cellular automaton fluids, belong
to the class of dynamical systems known as lattice gases. These are fundamentally dis-
crete systems which can be easely implemented in a computer and simulated precisely.
Lattice gases, unlike the computational fluid dynamics models, are not based on approx-
imating partial differential equations to solve them nummerically using some form of
discrete mesh in space and time, arguing that when the mesh becomes small enough, cor-
rect results would be obtained. Even their conceptual simplicity, lattice gases have often
proved extremely useful in practice, but for being models, they are inevitably incomplete,
and it is never in any definitive sense possible to establish their validity. Our modeling
approach for studying emissions and energy consumption in vehicular traffic provided
results that may not give a precise distinction between different realistic driving styles,
but definitevely it showed that, within the framework of the basic TCA models, emissions
and energy consumption are influenced by the driving style, and therefore, this modeling
approach may help in defining strategies to assess possible optimizing scenarios.
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[48] M. Sasvári, J. Kertész: Cellular automata models of single-lane traffic. Phys. Rev.
E. 56 4104–4110 (1997). doi:10.1103/PhysRevE.56.4104.

[49] C.-J. Fu, B.-H. Wang, C.-Y. Yin, T. Zhou, B. Hu, K. Gao, P.M. Hui, C.-
K. Hu: Analytical studies on a modified Nagel–Schreckenberg model with the
Fukui–Ishibashi acceleration rule. Chaos, Solitons & Fractals. 31 772–776 (2007).
doi:10.1016/j.chaos.2005.10.062.

[50] N. Treiber, A. Kesting, C. Thiemann: How much does traffic congestion increase
fuel consumption and emissions? Applying a fuel consumption model to the NGSIM
trajectory data. In: Transportation Research Board 87th Annual Meeting, 17 (2008).

[51] M. Nyhan, S. Sobolevsky, C. Kang, P. Robinson, A. Corti, M. Szell, D.
Streets, Z. Lu, R. Britter, S.R.H. Barrett, C. Ratti: Predicting vehicular
emissions in high spatial resolution using pervasively measured transportation
data and microscopic emissions model. Atmos. Environ. 140 352–363 (2016).
doi:10.1016/j.atmosenv.2016.06.018.

[52] W. Pan, Y. Xue, H.-D. He, W.-Z. Lu: Impacts of traffic congestion on fuel rate,
dissipation and particle emission in a single lane based on Nasch Model. Phys. A Stat.
Mech. Its Appl. 503 154–162 (2018). doi:10.1016/j.physa.2018.02.199.
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