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Abstract We apply the concept of time-to-collision (TTC) to the modeling of pedestrian
dynamics. The TTC combines the spatial distances with the velocities to quantify the
’distance’ to a collision. Therefore, it is a promising candidate for modeling the inter-
actions between pedestrians. Empirical studies also indicate that the interaction between
pedestrians can be described by the TTC: While the pair distribution of the distances, i.e.
the probability of two pedestrians to have a certain spatial distance, was found to strongly
depend on the relative velocity, the TTC accurately parametrizes its pair distribution.
However, there are still few pedestrian models that use the TTC. After giving a general
definition of the TTC, we present the widely used approximations for its calculation, espe-
cially in a one-dimensional setting. Combined with a desired time-gap, these give rise to
different models, namely an Optimal-Velocity model and a new Time-to-Collision model.
The TTC model exhibits, however, generic inconsistencies which are related to the esti-
mates we use to approximate the speed of the predecessor. The estimates have a large
impact on the dynamics and must therefore be interpreted as reflecting the pedestrians
behavior, i.e. as anticipation strategies. We propose new estimates for the predecessor’s
speed. These give rise to a rich family of models based on the TTC which are analyzed
by means of linear stability analysis and simulations.

Keywords Pedestrian dynamics · optimal velocity models · fundamental diagram ·
single-file motion · time-to-collision

Collective Dynamics 6, A133:1–10 (2021) Licensed under

http://collective-dynamics.eu/
mailto:j.cordes@fz-juelich.de
mailto:m.chraibi@fz-juelich.de
mailto:tordeux@uni-wuppertal.de
mailto:as@thp.uni-koeln.de
http://dx.doi.org/10.17815/CD.2021.133
http://collective-dynamics.eu/
http://collective-dynamics.eu/index.php/cod/issue/view/6
http://collective-dynamics.eu/index.php/cod/article/view/A133
http://creativecommons.org/licenses/by/4.0/


2 J. Cordes · M. Chraibi · A. Tordeux · A. Schadschneider

1 Introduction

The behavior of humans in a crowd is generally complex and gives rise to numerous
(collective) phenomena. Several key principles of the individual behavior are widely
agreed on. Pedestrians occupy a certain volume or area. They actively try to achieve
their goals and usually avoid collisions by keeping a safety distance. Furthermore, unlike
granular systems, pedestrians anticipate the change of their surroundings [1].

There are many ways to incorporate these features in a microscopic model. Crowds
may be described in terms of (social) forces [2], cellular automata [3] or by an optimal
velocity which is chosen according to the surroundings [4,5]. In many models, the interac-
tion is based on the spatial distances only. However, the pair distribution of the distances,
i.e. the probability of two pedestrians to have a certain spatial distance, calculated from
a large collection of data, was found to strongly depend on the relative velocity while the
time-to-collision accurately parametrizes its pair distribution [6].

The time-to-collision combines the spatial distances with the (relative) velocities to
quantify the ’distance’ to a collision. Therefore, it is a promising parameter to be in-
cluded in pedestrian models [6–9]. However, none of the previous models use the TTC in
an Optimal-Velocity-like model. In [10] the underlying problems of diverging times-to-
collision and unrealistic high flows are briefly discussed.

In this contribution, it is investigated how the TTC can be used as a fundamental quan-
tity in (minimal) pedestrian models. This could help to understand the way pedestrians
(inter-)act and might allow better planning in future.

At first, the time-to-collision is defined and calculated using different approximations.
These give rise to different models, the well-known Optimal-Velocity models and a new
class of Time-to-Collision models. Fundamental problems of these are discussed and re-
lated to the implicitly assumed anticipation strategies. More realistic anticipation schemes
are therefore proposed. Some numerical results are shown in the last section.

2 Time-to-Collision

Assume two pedestrians i and j which are represented by discs of diameter l as in Fig. 1.
Their spatial distance is defined as

D(t) = dist(i, j) = |~r j(t)−~ri(t)|. (1)

A collision will occur if any time tC ∈ [t,∞) exists such that D(tC) = l. The time-to-
collision τ between i and j at the time t is then defined as

τ
i j (t) := tC− t. (2)

If no time tC exists, the TTC is set to infinity. In the case of multiple times tC, their
minimum determines the time-to-collision.

Since the future evolution is usually not known, the TTC is typically calculated using
the following approximations:
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~vi
~v j

i

~ri = (xi,yi)

j

~r j = (x j,y j)

l

Figure 1 Schematic illustration of two colliding pedestrians. The position vectors~ri and~r j point to the
centers of the disks.

(a) ~vi = const. and~v j = 0

(b) ~vi = const. and~v j = const.

These approximations simply correspond to different Taylor expansions and could be
carried on to higher orders. The following considerations are restricted to these approxi-
mations and one dimension.

Assume a one-dimensional chain of N pedestrians on a ring of length L. We denote (xi)
the pedestrian positions and (vi) their velocities sorted in ascending order in the direction
of motion, i.e. pedestrian i+1 is the predecessor of pedestrian i. Approximation (a)
results in

τ
i,i+1
1 (t) =

{
∆xi−l

vi
for vi > 0

∞ else,
(3)

where ∆xi = xi+1−xi is the spatial distance between centers (by taking ∆xi = L+xi+1−xi,
when, due to the periodic conditions, xi+1 < xi). If the velocity of pedestrian i+ 1 is
assumed to be constant, i.e. approximation (b), the time-to-collision is

τ
i,i+1
2 (t) =

{
∆xi−l

vi−vi+1
for vi > vi+1

∞ else.
(4)

Both of these times are referred to as the time-to-collision. However, τ
i,i+1
1 is usually

denoted as the time gap. While it can be helpful to think of the time-to-collision as a
time distance, it should be emphasized that it is not a metric in the mathematical sense.
The TTC neither obeys the identity of indiscernibles nor the triangle inequality. It is not
symmetric for the first approximation, i.e. τ

i j
1 6= τ

ji
1 .

3 Models

Based on these approximations models can be defined by assuming that the pedestrians
choose their velocity such that the time-to-collision is larger or equal than a desired time
gap T . This gives rise to two types of models.
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The Optimal-Velocity Models: The time gap τ
i j
1 can be combined with the desired time

gap T by requiring τ
i j
1 ≥ T . The resulting model is

vi =
∆xi− l

T
, (5)

which is the first-order Optimal-Velocity model [11]. When a reaction-time tR is included,
this gives rise to either a delayed first-order model [12] or the second-order Optimal-
Velocity model [4].

Time-to-Collision Models: By using the time-to-collision τ
i j
2 and requiring τ

i j
2 ≥ T , the

first-order Time-to-Collision model is defined by

vi = vi+1 +
∆xi− l

T
. (6)

If a homogeneous population of N agents on a ring of length L is considered, the model
is generically inconsistent. An analytical solution can be obtained easily but requires
N · l = L. Therefore, only trivial solutions with

∆xi = l and vi = c≥ 0 (7)

exist. The solution (7) can be understood intuitively from the definition of the model:
Since, according to (6), every agent wants to move faster or equally fast as his or her
predecessor, all need to have the same velocity and a zero headway.

A maximal velocity vmax can be added to (6) as

vi = min
(

vmax,vi+1 +
∆xi− l

T

)
. (8)

In this model a solution exists for all densities, i.e.

∆xi ≥ l and vi = vmax. (9)

A second-order model with a reaction time tR can be defined as

v̇i =
1
tR

(
vi+1 +

∆xi− l
T
− vi

)
, (10)

which looks similar to the Full-Velocity-Difference model [13]. However, in the FVDM
the velocity relaxes to (∆xi− l)/T to which ∆v is added. In (10) the velocity relaxes to
vi+1 +(∆xi− l)/T . Consequently, the only homogeneous solutions are the solutions of
the first-order model (6) described above.

In a simplified picture, one-dimensional traffic consists of a homogeneous free-flow for
small densities and a congested, heterogeneous phase in which stop-and-go dynamics are
visible. In continuous models, this is typically reproduced by deterministic instabilities
of the homogeneous solution. The homogeneous solutions of (10) are, according to the
conditions derived in [14], always linearly unstable.



Time-To-Collision Models for Single-File Pedestrian Motion 5

Interim Conclusion: The two approximations correspond to extreme cases. In the Op-
timal Velocity model (5), from the time-to-collision point of view, all pedestrians assume
that the preceding pedestrian will stop at any time. The relative velocities are not consid-
ered and the model only depends on the spatial distances. In the time-to-collision model
(6), based on τ

i j
2 , the pedestrians assume that the others never stop or go slower but con-

tinue to move with their current velocity. This results either in (stationary) solutions only
for ρ = ρmax = 1/l, i.e. (7), or a very high flow for large densities as it can be seen from
(9).

The approximations used have a natural interpretation as different types of anticipation
used by the pedestrians. Since both approximations correspond to bad or unrealistic an-
ticipation strategies, one should look for better strategies to estimate the time-to-collision.
Or, more precisely, how do pedestrians approximate vi+1 in the time interval [t, t + τ i j]?.
This is not trivial to model since τ i j depends on vi+1 as well.

This approach gives rise to a class of models, which are all based on the principle that
the pedestrians choose their velocity such that the time-to-collision is larger or equal than
a desired time gap T and only differ in the way the TTC is estimated.

4 Anticipation Strategies

In this section different anticipation strategies, i.e. ways to estimate vi+1, are proposed.
The approximations of vi+1 are denoted as vapprox

i+1 . The corresponding first- and second-
order models are

vi = vapprox
i+1 +

∆xi− l
T

(11)

and

v̇i =
1
tR

(
vapprox

i+1 +
∆xi− l

T
− vi

)
. (12)

The stability conditions of the homogeneous solutions apply to the second-order models
(12) only. The homogeneous solutions of the first-order models (11) are always linearly
stable.

Trust Parameter: One might introduce a new parameter α ∈ [0,1] such that

vapprox
i+1 = αvi+1. (13)

The parameter α can be interpreted as the degree of trust in the current velocity of the
preceding pedestrian. A small α corresponds to estimating a strong tendency of the pre-
ceding agent to slow down. While for α close to one, the pedestrians assume that the
others tend to keep on moving with their current velocity. For α = 0, the OV model is
obtained and for α = 1 the TTC model. In general, the parameter could depend on various
other quantities, e.g. the normalized global density in the form α = 1−ρ/ρmax.

Reasonable (stationary) solutions only exist for α < 1. Hence, this approach does not
allow anticipating an increasing velocity of the preceding pedestrian. The homogeneous
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solution is linearly stable for

tR < T
(1−α2)

2
, (14)

which was derived from [14]. The model becomes more unstable as the trust α increases.
While a larger α allows a higher flow, it destabilizes the system.

Inverse Density: The inverse density is a measure of the available space for each pedes-
trian. As for the global density, ρ−1 = L/N corresponds to the mean headway 〈∆x〉. The
velocity might be approximated by combining it with the linear Optimal-Velocity function
from (5) 1

vapprox
i+1 =

〈∆x〉− l
T

=
ρ−1− l

T
. (15)

Thus, a density-dependent, constant term is added to the desired velocity. The homoge-
neous solution has twice the velocity than the one of the OV model. However, the stability
condition

tR <
1
2

T (16)

obtained from [14] is the same as the one of the second-order OV model [4]. The velocity
can be increased while sustaining the stability of the model.

The Voronoi density is a good measure of the local density [15]. It corresponds to the
inverse of the space occupied by one pedestrian. In one dimension the space of pedestrian
i+1 is the difference between the midpoints of pedestrians (i, i+1) and (i+1, i+2). The
approximated velocity reads

vapprox
i+1 =

1
2 (xi+2− xi)− l

T
. (17)

Hence, an interaction with the next agent in front is included in the model. The homoge-
neous solution of the second-order model is, according to [16], linearly stable for

tR <
3
8

T. (18)

The homogeneous solution has the same velocity as the global density approximation but
the stability conditions differ.

Alternatively, the own headway might be used to approximate the velocity of the next
pedestrian, i.e.

vapprox
i+1 =

∆xi− l
T

. (19)

This assumes that the pedestrian i+1 is simply in the same situation as i. The correspond-
ing stability condition reads

tR <
1
4

T. (20)

For T → 2T , the corresponding second-order model (12) has the same stability condition
and homogeneous velocity as the second-order OV model from [4].

1This can be interpreted as the following: Pedestrian i assumes that j determines his or her velocity using
the first approximation in which j assumes that all other pedestrians might stop at any time.
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Figure 2 The global fundamental diagrams of the first-order OV model (5) and the first-order models (11)
based on the density dependent anticipations using the local density (17), the global density (15)
and (13) with α = 1−ρ/ρmax . The parameters are vmax = 1.2 m

s , T = 1s and l = 0.3m. The
approximations using the local and the global density lead to the same fundamental diagram.
The values were obtained using simulations of the models.

5 Numerical Results

The simulations were carried out using periodic boundary conditions and an explicit
Euler-Scheme with dt = 0.01s. Typical values for the parameters were used, i.e. T = 1s,
vmax = 1.2m

s and l = 0.3m.
In Fig. 2 fundamental diagrams for different proposed first-order models are shown.

All models have a similar fundamental diagram that resembles the shape observed in
experiments, e.g. [17]. The approximations using the local and the global density, i.e.
(17) and (15) have the same fundamental diagram. The OV model (5) has the smallest
flow for all densities. If the time gap in the OV model is half of the one in the global
or local density approximations, they result in exactly the same fundamental diagram.
Compared to the global/local density approximation, α = 1−ρ has a higher flow for low
densities. In the highly congested system, it is vice versa.

In Fig. 3, the influence of the trust parameter α , i.e. (13), on the fundamental diagram
is shown. The expected 1/ρ-shape is maintained if α is small. However for α close to 1,
the pedestrians move with vmax even for very large densities.

6 Conclusion

In this paper a general definition of the time-to-collision was given (2). Typical approx-
imations were applied to calculate it in a one-dimensional setting, i.e. (3) and (4). By
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Figure 3 The global fundamental diagram for the proposed first-order model (11) based on the anticipa-
tion scheme (13) with a constant trust-parameter α . The parameters are vmax = 1.2 m

s , T = 1s
and l = 0.3m. The trust-parameter α is varied from α = 0, i.e. the OV model to α = 1, i.e. the
TTC model. The values were obtained using simulations of the models.

combining the TTC with a desired time gap several models were defined.
The first-order OV model (5) can be obtained using this approach. From this per-

spective, the OV model does inhibit anticipation. The pedestrians assume that all other
pedestrians stop while he or she keeps on moving with a constant velocity. In some situ-
ations this might be a reasonable assumption. But, in general, it probably does not reflect
the anticipation strategy of pedestrians.

The time-to-collision can be approximated by assuming that all velocities are constant,
i.e. (4). This leads to the TTC model (6) which is generically inconsistent for periodic
boundaries and a homogeneous crowd. The corresponding analytical solutions can easily
be obtained but the solution space, i.e. (7) and (9), is very restricted. Furthermore the
model exhibits very large flows at high densities. This unrealistic behavior is related to
the used approximations which should be interpreted as an anticipation strategy of the
agents.

Therefore, several explicit anticipation strategies were proposed. The corresponding
models show reasonable dynamics and fundamental diagrams. The stability conditions for
the inverse density approximations are tR < 4/8T for the global density (15), tR < 3/8T
for the Voronoi density of the next pedestrian (17), and tR < 2/8T if the headway of pedes-
trian i is used (19). While the stability conditions are different the inverse density approx-
imations all lead to the same velocity in the homogeneous solution, i.e. v = 2(ρ−1− l)/T .
This is twice the homogeneous velocity of the simple OV model (5).

In conclusion, single-file pedestrian models can be defined using the time-to-collision.
However, one needs to be aware of the (implicit) anticipation strategies that are used in
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approximations. If the proposed estimates of the TTC resemble the empirical results from
[6], i.e. are able to parametrize their pair distribution, is unclear. Furthermore, the pair
distribution of the proposed models could be examined and compared to the empirical
results. These questions, however, lie beyond the scope of this contribution and could be
addressed in future studies.

The proposed ansatz can be used for a two-dimensional model as well. Since the time-
to-collision becomes non-trivial and non-linear in two-dimensions this could give rise
to an interesting model. It should exhibit many crucial mechanisms while using few
assumptions.
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